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Abstract. We present the solvability result for the Dirichlet problem to
nondivergent quasilinear elliptic equations of the second order in weighted
Kondrat’ev spaces in the case when the boundary of a domain may include
singularities — conical points or arbitrary codimensional edges.
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We consider the boundary value problem

−aij(x, u,Du)DiDju+ a(x, u,Du) = 0 in Ω, u|∂Ω = 0, (1)

where Ω is a domain in Rn, (n � 2), with compact closure Ω and with nonregular
boundary ∂Ω.

The term “nonregular” means that ∂Ω contains a (n − m)-dimensional sub-
manifold M (an “edge” for m < n or a conical point for m = n), satisfying the
following condition: for all x0 ∈ M there exist a neighborhood U(x0) ⊂ Rn and a
diffeomorphism Ψ(x0) : U(x0)→ Rn, such that
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(i) Ψ(x0)(U(x0) ∩Ω) = {x ∈ Km(G) : |x′| < ρ0, |x′′| < ρ0}.
Here Km(G) = Km(G) × Rn−m, Km(G) stands for an open m-dimensional
cone cutting on the unit sphere Sm a domain G with smooth boundary,
x = (x′, x′′), x′ ∈ Rm, x′′ ∈ Rn−m and |x′|, |x′′| denote corresponding Eu-
clidean norms. Note also that G depends on x0 while ρ0 � 1 does not depend.

(ii) Ψ(x0)(U(x0) ∩ ∂Ω) = {x ∈ ∂Km(G) : |x′| < ρ0, |x′′| < ρ0},
(iii) Ψ(x0)(x0) = 0, Ψ ′

(x0)(x
0) = In,

(iv) the norms of Jacobians Ψ ′
(x0)(x) and (Ψ−1

(x0))
′(Ψ(x0)(x)) are bounded uniformly

with respect to x0 ∈M and x ∈ U(x0),
(v) Km(G) ⊂ {x ∈ Rm : x̂′, x1 < θ < π

2 } for all x0 ∈ M, and θ does not depend
on x0.

Setting d(x) = dist{x,M} we introduce the scale of weighted spaces Lr,(α)(Ω)
with the norm

|||u|||r,(α),Ω = ‖u · (d(x))α‖Lr(Ω),

and the scale of Kondrat’ev spaces V2
r,(α)(Ω) with the norm

|||u|||V2
r,(α)(Ω) = |||D(Du)|||r,(α),Ω + |||Du · (d(x))−1|||r,(α),Ω + |||u · (d(x))−2|||r,(α),Ω.

Finally, the notation ∂Ω ∈ V2
r,(α) with α < 1− n/r is understood as follows:

1) ∂Ω \ M ∈W 2
r,loc;

2) for all points x0 ∈ M the matrix D2Ψ(x0) belongs to Lr,(α)(U(x0)). Moreover
the norms ‖D2Ψ(x0)‖r,(α) are bounded uniformly with respect to x0 ∈ M.

Assume that (aij) in (1) is a symmetric matrix and the following natural struc-
ture conditions hold for all x ∈ Ω, z ∈ R1, p ∈ Rn:

ν|ξ|2 � aij(x, z, p)ξiξj � ν−1|ξ|2, ∀ξ ∈ Rn, ν = const > 0, (A0)

|a(x, z, p)| � µ|p|2 + b(x)|p|+ Φ1(x), µ = const > 0, (A1)

b, Φ1 ∈ Lr,(α)(Ω), α < 1− n/r, n < r <∞; (2)∣∣∣∣∂aij(x, z, p)∂pk

∣∣∣∣ � µ

1 + |p| ,
∣∣∣∣∂aij(x, z, p)∂z

pk +
∂aij(x, z, p)

∂xk

∣∣∣∣ � µ|p|+ Φ2(x), (A2)

Φ2 ∈ Lq,(α1)(Ω), α1 < 1− n/q, n < q <∞. (3)

Before stating the main result we need to introduce some notations. Let θ̂(θ, ν)
be the solution of the equation

ctg(θ̂) = ν · ctg(θ), θ̂ ∈
]
0,
π

2

[
.

Let also Λ̂(m, θ) be the first eigenvalue of the Dirichlet problem for the Laplace-
Bel’trami operator on the spherical “cap” {x ∈ Rm : x̂′, x1 < θ} ∩ Sm, while ω̂ be
a positive solution of the equation ω2 + (m− 2)ω − Λ̂ = 0.
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Theorem 1 (Solvability in weighted spaces). Let the following conditions be
fulfilled:

(a) r > max
{
n, n−mω̂−1

}
, α ∈

]
2− m

r − ω̂, 1−
n
r

[
, ∂Ω ∈ V2

r,(α),

(b) for all solutions u[τ ](·) ∈ V2
r,(α)(Ω), τ ∈ [0, 1], of the family of problems:

τ(−aij(x, u,Du)DiDju+ a(x, u,Du))− (1 − τ)∆u = 0 in Ω,

u|∂Ω = 0
(4)

the estimate ‖u[τ ](·)‖Ω � M0 holds true,

(c) the conditions (A0)—(A2), (2)—(3) are fulfilled for |z| � M0,

(d) the function a(·, z, p) regarded as an element of the space Lr,(α)(Ω) is contin-
uous with respect to (z, p).
Then for all τ ∈ [0, 1] the problem (4) has a solution û[τ ](·) ∈ V2

r,(α)(Ω). In

particular, û[1](·) is a solution of the problem (1).

For details and proof we refer the reader to [1].
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