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SELF-PROPAGATING HIGH TEMPERATURE SYNTHESIS
(SHS) IN THE HIGH ACTIVATION ENERGY REGIME

R. MONNEAU and G. S. WEISS

Abstract. We derive the precise limit of SHS in the high activation energy scaling
suggested by B. J. Matkowsky and G. I. Sivashinsky in 1978 and by A. Bayliss,
B. J. Matkowsky and A. P. Aldushin in 2002. In the time-increasing case the limit
turns out to be the Stefan problem for supercooled water with spatially inhomoge-
neous coefficients.

Although the present paper leaves open mathematical questions concerning the
convergence, our precise form of the limit problem suggests a strikingly simple
explanation for the numerically observed pulsating waves.

1. Introduction

The system

∂tu − ∆u = vf(u)

∂tv = −vf(u) ,
(1)

where u is the normalized temperature, v is the normalized concentration of the
reactant and the non-negative nonlinearity f describes the reaction kinetics, is
a simple but widely used model for solid combustion (i.e. the case of the Lewis
number being +∞). In particular it is being used to model the industrial process of
Self-propagating High temperature Synthesis (SHS). In the case of high activation
energy interesting phenomena like the instability of planar waves, fingering and
helical waves are observed.

Since the seventies (and possibly even earlier) it has been argued that the
problem is for high activation energy related to a Stefan problem describing the
freezing of supercooled water (see [20], [10, p. 57]). In [20] B. J. Matkowsky
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and G. I. Sivashinsky derived a formal singular limit containing a jump condi-
tion for the temperature on the interface. Later the Stefan problem for super-
cooled water – the intuitive limit – became the basis for numerous papers fo-
cusing on stability analysis of (1), fingering, helical waves etc. (see for example
[10],[11],[9],[13],[12],[14],[8],[1],[2]).

Surprisingly there are few mathematical results on the subject: In [19] E. Logak
and V. Loubeau proved existence of a planar wave in one-space dimension and gave
a rigorous proof for convergence as the activation energy goes to infinity.

Instability of the planar wave for a special linearization (and high activation
energy) is due to [4].

In the present paper we argue that the SHS system converges to the irreversible
Stefan problem for supercooled water. As the initial data of the reactant concen-
tration enters the equation as the activation energy goes to infinity, our result also
suggests a surprisingly simple explanation for the numerically observed pulsating
waves (cf. [1] and [2]), namely that they are caused by the spatial inhomogeneity
v0 (or Y 0, respectively) in the below equation and are therefore mathematically
related to the pulsating waves in [3].

In the time-increasing case we give a rigorous convergence proof in higher di-
mensions. For general initial data in one space-dimension see our forthcoming
paper [21].

In the original setting by B. J. Matkowsky and G. I. Sivashinsky [20, equa-
tion (2)],

∂tuN − ∆uN = (1 − σN )N eNvN exp
(
− N

uN

)
,

∂tvN = −N eNvN exp
(
− N

uN

)
,

(2)

each limit u∞ of uN > 0 as N → ∞ satisfies for (σN )N∈N ⊂⊂ [0, 1) (for
σN ↑ 1, N → ∞ the limit in this scaling is the solution of the heat equation;
cf. Section 5.1 and Theorem 4.1)

∂tu∞ − v0∂tχ = ∆u∞ in (0,+∞) × Ω,(3)

where v0 are the initial data of v∞ and

χ(t, x)
{ ∈ [0, 1], esssup (0,t)u∞(·, x) ≤ 1 ,

= 1, esssup (0,t)u∞(·, x) > 1 ,

and in the time-increasing case,

χ(t, x)

⎧⎨
⎩

= 0, u∞(t, x) < 1 ,
∈ [0, 1], u∞(t, x) = 1 ,
= 1, u∞(t, x) > 1 .
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In the SHS system with another scaling and a temperature threshold (see [2,
p. 109–110]),

(4)

∂tθN − ∆θN = (1 − σN )NYN exp
(

N(1 − σN )(θN − 1)
σN + (1 − σN )θN

)
χ{θN >θ̄},

∂tYN = −(1 − σN )NYN exp
(

N(1 − σN )(θN − 1)
σN + (1 − σN )θN

)
χ{θN >θ̄}

where N(1 − σN ) >> 1, σN ∈ (0, 1) and θ̄ ∈ (0, 1), each limit θ∞ of θN satisfies
(cf. Section 5.2 and Theorem 4.1)

∂tθ∞ − Y 0∂tχ = ∆θ∞ in (0,+∞) × Ω,(5)

where Y 0 are the initial data of Y∞ and

χ(t, x)
{ ∈ [0, 1], esssup (0,t)θ∞(·, x) ≤ 1 ,

= 1, esssup (0,t)θ∞(·, x) > 1 ,

and in the time-increasing case,

χ(t, x)

⎧⎨
⎩

= 0, θ∞(t, x) < 1 ,
∈ [0, 1], θ∞(t, x) = 1 ,
= 1, θ∞(t, x) > 1 .

To our knowledge this precise form of the limit problem, i.e. the equation with the
discontinuous hysteresis term, has not been known. Even in the time-increasing
case it does not coincide with the formal result in [20].

In the case that θ∞ (or u∞, respectively) is increasing in time and v0 (or Y 0,
respectively) is constant, our limit problem coincides with the Stefan problem for
supercooled water, an extensively studied ill-posed problem (for a survey see [5]).
As it is a forward-backward parabolic equation it is not clear whether one should
expect uniqueness (see [6, Remark 7.2] for an example of non-uniqueness in a
related problem).

On the positive side, much more is known about the Stefan problem for su-
percooled water than the SHS system, e.g. existence of a finger ([15]), instability
of the finger ([18]), one-phase solutions ([6]); those results, when combined with
our convergence result, suggest that similar properties should be true for the SHS
system.

It is interesting to observe that even in the time-increasing case our singular
limit selects certain solutions of the Stefan problem for supercooled water. For
example, u(t) = (κ − 1)χ{t<1} + κχ{t>1} is for each κ ∈ (0, 1) a perfectly valid
solution of the Stefan problem for supercooled water, but, as easily verified, it
cannot be obtained from the ODE

∂tuε(t) = −∂t exp

(
−1

ε

∫ t

0

exp

(
1 − 1

(uε(s)+1)

ε

)
ds

)
as ε → 0 .
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2. Notation

Throughout this article R
n will be equipped with the Euclidean inner product x ·y

and the induced norm |x| . Br(x) will denote the open n-dimensional ball of center
x , radius r and volume rn ωn . When the center is not specified, it is assumed to
be 0.

When considering a set A , χA shall stand for the characteristic function of
A , while ν shall typically denote the outward normal to a given boundary. The
operator ∂t will mean the partial derivative of a function in the time direction, ∆
the Laplacian in the space variables and Ln the n-dimensional Lebesgue measure.

Finally W2,1
p denotes the parabolic Sobolev space as defined in [17].

3. Preliminaries

In what follows, Ω is a bounded C1-domain in R
n and

uε ∈
⋂

T∈(0,+∞)

W2,1
2 ((0, T ) × Ω)

is a strong solution of the equation

∂tuε(t, x) − ∆uε(t, x) = −v0
ε(x)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, x)) ds

)
,

uε(0, ·) = u0
ε in Ω,(6)

∇uε · ν = 0 on (0,+∞) × ∂Ω;

here gε is a non-negative function on R satisfying:

0) gε is for each ε ∈ (0, 1) piecewise continuous with only one possible jump
at z0, gε(z0−) = gε(z0) = 0 in case of a jump, and gε satisfies for each
ε ∈ (0, 1) and for every z ∈ R the bound gε(z) ≤ Cε(1 + |z|).

1) gε/ε → 0 as ε → 0 on each compact subset of (−∞, 0).
2) for each compact subset K of (0,+∞) there is cK > 0 such that

min(gε, cK) → cK uniformly on K as ε → 0.

The initial data satisfy 0 ≤ v0
ε ≤ C < +∞, v0

ε converges in L1(Ω) to v0 as
ε → 0, (u0

ε)ε∈(0,1) is bounded in L2(Ω), it is uniformly bounded from below by a
constant umin, and it converges in L1(Ω) to u0 as ε → 0.

Remark 3.1. Assumption 0) guarantees existence of a global strong solution
for each ε ∈ (0, 1).

4. The High Activation Energy Limit

Theorem 4.1. The family (uε)ε∈(0,1) is for each T ∈ (0,+∞) precompact in
L1((0, T ) × Ω), and each limit u of (uε)ε∈(0,1) as a sequence εm → 0, satisfies in
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the sense of distributions the initial-boundary value problem

∂tu − v0∂tχ = ∆u in (0,+∞) × Ω,

u(0, ·) = u0 + v0H(u0) in Ω,(7)

∇u · ν = 0 on (0,+∞) × ∂Ω,

where

χ(t, x)

{ ∈ [0, 1], esssup (0,t)u(·, x) ≤ 0 ,

= 1, esssup (0,t)u(·, x) > 0 ,

and H is the maximal monotone graph

H(z)

⎧⎪⎪⎨
⎪⎪⎩

= 0, z < 0,

∈ [0, 1], z = 0,

= 1, z > 0 .

Moreover, χ is increasing in time and u is a supercaloric function.
If (uε)ε∈(0,1) satisfies ∂tuε ≥ 0 in (0, T ) × Ω, then u is a solution of the Stefan
problem for supercooled water, i.e.

∂tu − v0∂tH(u) = ∆u in (0,+∞) × Ω .

Remark 4.2. Note that assumption 1) is only needed to prove the second
statement “If . . .”.

Proof. Step 0. (Uniform Bound from below):
Since uε is supercaloric, it is bounded from below by the constant umin.

Step 1. (L2((0, T ) × Ω)-Bound):

The time-integrated function vε(t, x) :=
∫ t

0
uε(s, x) ds, satisfies

∂tvε(t, x) − ∆vε(t, x) = wε(t, x) + u0
ε(x)(8)

where wε is a measurable function satisfying 0 ≤ wε ≤ C. Consequently

∫ T

0

∫
Ω

(∂tvε)2 +
1
2

∫
Ω

|∇vε|2(T ) =
∫ T

0

∫
Ω

(wε + u0
ε)∂tvε

≤ 1
2

∫ T

0

∫
Ω

(∂tvε)2 +
T

2

∫
Ω

(C + |u0
ε|)2,

implying ∫ T

0

∫
Ω

u2
ε ≤ T

∫
Ω

(C + |u0
ε|)2 .(9)
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Step 2. (L2((0, T ) × Ω)-Bound for ∇min(uε,M):
For

GM (z) :=

⎧⎪⎨
⎪⎩

z2

2
, z < M,

Mz − M2

2
, z ≥ M ,

and any M ∈ N,∫
Ω

GM (uε)−GM (u0
ε) +

∫ T

0

∫
Ω

|∇min(uε,M)|2

=
∫ T

0

∫
Ω

−v0
ε min(uε,M)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, x)) ds

)
.

As ∂t exp(− 1
ε

∫ t

0
gε(uε(s, x)) ds) ≤ 0, we know that ∂t exp(− 1

ε

∫ t

0
gε(uε(s, x)) ds)

is bounded in L∞(Ω;L1((0, T ))), and∫ T

0

∫
Ω

−v0
ε min(uε,M)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, x)) ds

)

≤ C

∫
Ω

sup
(0,T )

max(min(uε,M), 0) ≤ CMLn(Ω).

Step 3. (Compactness):
Let χM : R → R be a smooth non-increasing function satisfying χ(−∞,M−1) ≤
χM ≤ χ(−∞,M) and let ΦM be the primitive such that ΦM (z) = z for z ≤ M − 1
and ΦM ≤ M . Moreover, let (φδ)δ∈(0,1) be a family of mollifiers, i.e. φδ ∈
C0,1

0 (Rn; [0,+∞)) such that
∫

φδ = 1 and supp φδ ⊂ Bδ(0) . Then, if we extend uε

and v0
ε by the value 0 to the whole of (0,+∞)×R

n, we obtain by the homogeneous
Neumann data of uε that
∂t ( ΦM (uε) ∗ φδ) (t, x)

=
((

χM (uε)
(

χΩ∆uε − v0
ε∂t exp

(
−1

ε

∫ t

0

gε(uε(s, x)) ds

)))
∗ φδ

)
(t, x)

=
∫

Rn

χM (uε)(t, y) (χΩ(y)∆uε(t, y)

−
(

v0
ε(y)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, y)) ds

))
φδ(x − y) dy

=
∫

Rn

φδ(x − y)
(
− χ′

M (uε(t, y))χΩ(y)|∇uε(t, y)|2

− χM (uε(t, y))v0
ε(y)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, y)) ds

))
+ χM (uε(t, y))χΩ(y)∇uε(t, y) · ∇φδ(x − y) dy.

Consequently ∫ T

0

∫
Rn

|∂t (ΦM (uε) ∗ φδ) | ≤ C1(Ω, C,M, δ, T )
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and ∫ T

0

∫
Rn

|∇ (ΦM (uε) ∗ φδ) | ≤ C2(Ω,M, δ, T ) .

It follows that (ΦM (uε) ∗φδ)ε∈(0,1) is for each (M, δ, T ) precompact in L1((0, T )×
R

n).
On the other hand∫ T

0

∫
Rn

|ΦM (uε) ∗ φδ − ΦM (uε)|

≤ C3

(
δ2

∫ T

0

∫
Ω

|∇ΦM (uε)|2
) 1

2

+ 2(M − umin)TLn(Bδ(∂Ω))

≤ C4(C,Ω, umin,M, T ) δ.

Combining this estimate with the precompactness of (ΦM (uε) ∗ φδ)ε∈(0,1) we
obtain that ΦM (uε) is for each (M,T ) precompact in L1((0, T ) × R

n). Thus,
by a diagonal sequence argument, we may take a sequence εm → 0 such that
ΦM (uεm

) → zM a.e. in (0,+∞) × R
n as m → ∞, for every M ∈ N. At a.e. point

of the set {zM < M−1}, uεm
converges to zM . At each point (t, x) of the remainder⋂

M∈N
{zM ≥ M−1}, the value uεm

(t, x) must for large m (depending on (M, t, x))
be larger than M − 2. But that means that on the set

⋂
M∈N

{zM ≥ M − 1}, the
sequence (uεm

)m∈N converges a.e. to +∞. It follows that (uεm
)m∈N converges a.e.

in (0,+∞)×Ω to a function z : (0,+∞)×Ω → R∪{+∞}. But then, as (uεm
)m∈N

is for each T ∈ (0,+∞) bounded in L2((0, T )×Ω), (uεm
)m∈N converges by Vitali’s

theorem (stating that a.e. convergence and a non-concentration condition in Lp

imply in bounded domains Lp-convergence) for each p ∈ [1, 2) in Lp((0, T )×Ω) to
the weak L2-limit u of (uεm

)m∈N. It follows that

Ln+1(
⋂

M∈N

{zM ≥ M − 1}) = Ln+1({u = +∞}) = 0.

Step 4. (Identification of the Limit Equation in esssup (0,t)u > 0):

Let us consider (t, x) ∈ (0,+∞)×Ω such that uεm
(s, x) → u(s, x) for a.e. s ∈ (0, t)

and u(·, x) ∈ L2((0, t)). In the case esssup (0,t)u(·, x) > 0, we obtain by Egorov’s
theorem and assumption 2) that

exp
(
− 1

εm

∫ t

0

gεm
(uεm

(s, x)) ds

)
→ 0 as m → ∞.

Step 5. (The case ∂tuε ≥ 0):
Let (t, x) be such that uεm

(t, x) → u(t, x) = λ < 0: Then by assumption 1),

exp
(
− 1

εm

∫ t

0

gεm
(uεm

(s, x)) ds

)
≥ exp

(
−t

max[umin,λ/2] gεm

εm

)
→ 1 as m → ∞.

�
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Remark 4.3.
1) For a more general result in one space-dimension see the forthcoming paper

[21].
2) We also obtain a rigorous convergence result in the case of (higher dimen-

sional) traveling waves with suitable conditions at infinity. In this case
our L2(W 1,2)-estimate (Step 2) implies a no-concentration property of the
time-derivative.

5. Applications

Although the limit equation is an ill-posed problem, the convergence to the limit
seems to be robust with respect to perturbations of the ε-system and the scaling:
here we mention two examples of different systems leading to the same limit. Other
examples can be found in mathematical biology (see [16] and [22]).

5.1. The Matkowsky-Sivashinsky scaling

We apply our result to the scaling in [20, equation (2)], i.e.

∂tuN − ∆uN = (1 − σN )NvN exp
(

N

(
1 − 1

uN

))
,

∂tvN = −NvN exp
(

N

(
1 − 1

uN

))
,

(10)

where the normalized temperature uN and the normalized concentration vN are
non-negative, (σN )N∈N ⊂⊂ [0, 1) (in the case σN ↑ 1, N → ∞ the limit equation
in the scaling as it is would be the heat equation, but we could still apply our
result to uN/(1 − σN )) and the activation energy N → ∞.

Setting umin := −1, ε := 1/N , uε := uN − 1 and

gε(z) :=

⎧⎪⎨
⎪⎩

exp

(
1 − 1

z+1

ε

)
, z > −1

0, z ≤ −1

and integrating the equation for vN in time, we see that the assumptions of The-
orem 4.1 are satisfied and we obtain that each limit u∞, σ∞ of uN , σN satisfies

∂tu∞ − (1 − σ∞)v0∂tχ = ∆u∞ in (0,+∞) × Ω,(11)

where

χ(t, x)

{ ∈ [0, 1], esssup (0,t)u∞(·, x) ≤ 1 ,

= 1, esssup (0,t)u∞(·, x) > 1 ,

and in the time-increasing case,

∂tu∞ − (1 − σ∞)v0∂tH(u∞) = ∆u∞ in (0,+∞) × Ω,

u∞(0, ·) = u0 + v0H(u0) in Ω,(12)

∇u∞ · ν = 0 on (0,+∞) × ∂Ω,
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where v0 are the initial data of v∞. Moreover, χ is increasing in time and u∞ is
a supercaloric function.

5.2. SHS in another scaling with temperature threshold

Here we consider (cf. [2, p. 109–110]), i. e.

∂tθN − ∆θN = (1 − σN )NYN exp
(

N(1 − σN )(θN − 1)
σN + (1 − σN )θN

)
χ{θN >θ̄},

∂tYN = −(1 − σN )NYN exp
(

N(1 − σN )(θN − 1)
σN + (1 − σN )θN

)
χ{θN >θ̄}

(13)

where N(1 − σN ) >> 1, σN ∈ (0, 1) and the constant θ̄ ∈ (0, 1) is a threshold
parameter at which the reaction sets in.

Setting umin = −1, ε := 1/(N(1 − σN )), κ(ε) := 1 − σN , uε := θN − 1,

gε(z) :=

⎧⎪⎨
⎪⎩

exp

(
z

κ(ε)z+1

ε

)
, z > θ̄ − 1

0, z ≤ θ̄ − 1

and integrating the equation for YN in time, we see that the assumptions of The-
orem 4.1 are satisfied and we obtain that each limit u∞ of uN satisfies

∂tu∞ − v0∂tχ = ∆u∞ in (0,+∞) × Ω,(14)

χ(t, x)

{ ∈ [0, 1], esssup (0,t)u∞(·, x) ≤ 1 ,

= 1, esssup (0,t)u∞(·, x) > 1 ,

and in the time-increasing case,

∂tu∞ − v0∂tH(u∞) = ∆u∞ in (0,+∞) × Ω,

u∞(0, ·) = u0 + v0H(u0) in Ω,(15)

∇u∞ · ν = 0 on (0,+∞) × ∂Ω,

where v0 are the initial data of v∞. Moreover, χ is increasing in time and u∞ is
a supercaloric function.

6. Open questions

The most pressing task is of course to study the existence or non-existence of
“peaking” (cf. Figure 1) of the solution in the negative phase (for the case of one
space dimension see the forthcoming paper [21]). A related question is whether
(uε)ε∈(0,1) is bounded in L∞ in the case of uniformly bounded initial data. Al-
though this seems obvious, it is not obvious how to prevent concentration close to
the interface.

Uniqueness for the limit problem (the irreversible Stefan problem for super-
cooled water) in general seems unlikely. One might however ask whether time-
global uniqueness holds in the case that u is strictly increasing in the x1-direction.
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Figure 1. Is it possible for the solution to have a tiny peak traveling at high speed?.

By the result in [7] for the ill-posed Hele-Shaw problem, time-local uniqueness is
likely to be true here, too.

Acknowledgment. We thank Stephan Luckhaus, Mayan Mimura, Stefan
Müller, and Juan J. L. Velázquez for discussions.
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