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A REMARK ON THE LARGE TIME BEHAVIOR
OF SOLUTIONS OF VISCOUS HAMILTON-JACOBI

EQUATIONS

PH. SOUPLET

1. Introduction and main result

Consider the viscous Hamilton-Jacobi equation{
ut −∆u = |∇u|q, t > 0, x ∈ RN

u(0, x) = u0(x), x ∈ RN ,
(1)

where q > 0 and u0 ∈ Cb(RN ). It is known [6] that (1) admits a unique classical
solution, global for t > 0.

The large time behavior of solutions of problem (1) has been studied recently
by several authors, see [1]–[5], [7, 8] and the references therein. In particular it
was shown by Gilding [5] that the large time limits

ω := lim inf
t→∞

v(x, t) ≤ ω := lim sup
t→∞

v(x, t)

are independent of x ∈ RN . One of the main results of [5] is the following.

Theorem A. Assume 0 < q < 2 and u0 ∈ Cb(RN ). Then ω = ω.

It was known that Theorem A fails for the linear heat equation and, moreover,
Gilding observed that it fails for q = 2. The aim of this short note is to show that
the assumption q < 2 in Theorem A is actually necessary.

Theorem 1. Assume q ≥ 2. Then there exists u0 ∈ Cb(RN ) such that ω < ω.

Proof. It is known (see e. g. [5, Proposition H1]) that there exists v0 ∈ C1(RN )∩
W 1,∞(RN ) such that the solution v of the heat equation{

vt −∆v = 0, t > 0, x ∈ RN

v(0, x) = v0(x), x ∈ RN
(2)

satisfies

ω∗ := lim inf
t→∞

v(x, t) < ω∗ := lim sup
t→∞

v(x, t), x ∈ RN .(3)
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Moreover, upon replacing v0 by λv0+µ for suitable constants λ, µ, one can assume
that

ω∗ = 0(4)

and

‖v0‖∞ ≤ 1/2, ‖∇v0‖∞ ≤ 1/2.

Now, set

u0(x) := ev0(x)−1.(5)

The function w := ev −1 satisfies{
wt −∆w = |∇w|2, t > 0, x ∈ RN

w(0, x) = u0(x), x ∈ RN .
(6)

Let u be the solution of (1) with initial data u0 defined by (5). We note that

‖∇u0‖∞ ≤ ‖∇v0‖∞ ‖ ev0 ‖∞ ≤ (1/2) e1/2 < 1.

Since it is known (see e.g. [5, Lemma 2]) that |∇u| satisfies a maximum principle,
it follows that

|∇u| ≤ ‖∇u0‖∞ < 1 in Q := (0,∞)× RN .

Due to q ≥ 2, we deduce that

ut −∆u = |∇u|q ≤ |∇u|2 in Q.

In view of (6), it follows from the comparison principle that

u ≤ w = ev −1 in Q.

In particular, there holds

ω ≤ eω∗
−1 = 0.(7)

But on the other hand, we have u0 ≥ v0 due to (5). In view of (2), the maximum
principle implies that u ≥ v, hence

ω ≥ ω∗.(8)

Combining (3), (4), (7) and (8), we conclude that

ω ≥ ω∗ > ω∗ = 0 ≥ ω

and the proof of Theorem 1 is complete. �
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1997/1998), 57–67, Stud. Math. Appl. 31, North-Holland, Amsterdam, 2002.

2. Ben-Artzi M., Goodman J. and Levy A., Remarks on a nonlinear parabolic equation, Trans.
Amer. Math. Soc. 352 (2000), 731–751.

3. Ben-Artzi M., Souplet Ph. and Weissler F. B., The local theory for viscous Hamilton-Jacobi

equations in Lebesgue spaces J. Math. Pures Appl. 81 (2002), 343–378.
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