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DERIVATION OF THE DRIFT DIFFUSION SHOCKLEY-READ-HALL
MODEL FOR SEMICONDUCTORS∗

VERA MILJANOVIĆ†

Abstract. The Shockley-Read-Hall model for recombination-generation of electron-hole pairs in
semiconductors based on a quasistationary approximation for electrons in a trapped state is generalized
to distributed trapped states in the forbidden band. Existence of solutions has been proven, and the
quasistationary limit is rigorously justified.
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1. Introduction. The Shockley-Read-Hall (SRH-)model was introduced in 1952
[14], [7] to describe the statistics of recombination and generation of holes and electrons
in semiconductors occurring through the mechanism of trapping.

The transfer of electrons from the valence band to the conduction band is referred
to as the generation of electron-hole pairs (or pair-generation process), since not only a
free electron is created in the conduction band, but also a hole in the valence band which
can contribute to the charge current. The inverse process is termed recombination of
electron-hole pairs. The bandgap between the upper edge of the valence band and the
lower edge of the conuction band is very large in semiconductors, which means that a big
amount of energy is needed for a direct band-to-band generation event. The presence of
trap levels within the forbidden band caused by crystal impurities facilitates this process,
since the jump can be split into two parts, each of them ’cheaper’ in terms of energy. The
basic mechanisms are illustrated in Figure 1.1: (a) hole emission, (b) hole capture, (c)
electron emission, (d) electron capture.
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Figure 1: The four basic processes of electron-hole recombination.

compared to typical carrier densities. This model is an important ingredient of simulation
models for semiconductor devices (see [9]).

In this work, generalization of the classical SRH model is considered: Instead of a single
trapped state, a distribution of trapped states across the forbidden band is allowed. For this
model existence result and rigorous result concerning the quasistationary limit is proven. The
essential estimate is derived similarly to [5], where the quasineutral limit has been carried
out.

In the following section, the drift-diffusion based model is formulated and nondimension-
alized, and the SRH-model is formally derived. Section 3 contains the rigorous justification
of the passage to the quasistationary limit.

2 Formal derivation of the Shockley-Read-Hall model

We consider a semiconductor crystal represented by the bounded domain Ω ⊆ R
3 (all our

results are easily extended to the one and two- dimensional situations) with a constant (in
space) number density of traps Ntr, where

Ntr =

∫ Ec

Ev

Mtr(E) dE. (1)

We denote by Ev and Ec valence band edge and the conduction band edge, respectively,
whereas Mtr(E) is the density of available trapped states, and it depends on energy E. The
position density of occupied traps is given by

ntr(x, t) =

∫ Ec

Ev

Mtr(E)ftr(x, E, t) dE, (2)

where ftr(x, E, t) is the fraction of occupied trapped states at position x ∈ Ω, energy

2

Fig. 1.1. The four basic processes of electron-hole recombination.

Models for this process involve equations for the densities of electrons in the conduc-
tion band, holes in the valence band, and trapped electrons. Basic for the SRH model are
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the drift-diffusion assumption for the transport of electrons and holes, the assumption
of one trap level in the forbidden band, and the assumption that the dynamics of the
trapped electrons is quasistationary, which can be motivated by the smallness of the den-
sity of trapped states compared to typical carrier densities. This model is an important
ingredient of simulation models for semiconductor devices (see [9]).

In this work, generalization of the classical SRH model is considered: Instead of a
single trapped state, a distribution of trapped states across the forbidden band is allowed.
For this model existence result and rigorous result concerning the quasistationary limit
is proven. The essential estimate is derived similarly to [5], where the quasineutral limit
has been carried out.

In the following section, the drift-diffusion based model is formulated and nondi-
mensionalized, and the SRH-model is formally derived. Section 3 contains the rigorous
justification of the passage to the quasistationary limit.

2. Formal derivation of the Shockley-Read-Hall model. We consider a semi-
conductor crystal represented by the bounded domain Ω ⊆ R3 (all our results are easily
extended to the one and two-dimensional situations) with a constant (in space) number
density of traps Ntr, where

Ntr =
∫ Ec

Ev

Mtr(E) dE. (2.1)

We denote by Ev and Ec valence band edge and the conduction band edge, respec-
tively, whereas Mtr(E) is the density of available trapped states, and it depends on energy
E. The position density of occupied traps is given by

ntr(x, t) =
∫ Ec

Ev

Mtr(E)ftr(x, E, t) dE, (2.2)

where ftr(x,E, t) is the fraction of occupied trapped states at position x ∈ Ω, energy
E ∈ (Ev, Ec), and time t ≥ 0. Note that 0 ≤ ftr ≤ 1 should hold from a physical point
of view.

The governing equations are given by

∂tftr = Sp − Sn, Sp =
1

τpNtr

[
p0(1− ftr)− pftr

]
Sn =

1
τnNtr

[
n0ftr − n(1− ftr)

] (2.3)

∂tn = ∇ · Jn + Rn, Jn = µn(UT∇n− n∇V ),

Rn =
∫ Ec

Ev

SnMtr dE
(2.4)

∂tp = −∇ · Jp + Rp, Jp = −µp(UT∇p + p∇V ),

Rp =
∫ Ec

Ev

SpMtr dE
(2.5)

εs∆V = q(n + ntr − p− C). (2.6)

Here n ≥ 0 denotes the density of electrons in the conduction band, whereas p ≥ 0
is the density of holes in the valence band, with p, n being oppositlly charged. For the
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current densities Jn, Jp we use the simplest possible model, the drift diffusion ansatz, with
constant mobilities µn, µp, and with thermal voltage UT . Moreover, since the trapped
states have fixed positions, there is no flux in (2.3).

By Rn and Rp we denote the recombination-generation rates for n and p, respectively.
The rate constants are τn(E), τp(E), n0(E), p0(E), where n0(E)p0(E) = ni

2 with the
energy independent intrinsic density ni.

In the Poisson equation (2.6), V (x, t) is the electrostatic potential, εs the permittivity
of the semiconductor, q the elementary charge, and C = C(x) the doping profile.

Note that if τn, τp, n0, p0 are independent from E, or if there exists only one trap level
Etr with Mtr(E) = Ntrδ(E − Etr), then Rn = 1

τn
[n0

ntr

Ntr
− n(1 − ntr

Ntr
)],Rp = 1

τp
[p0(1 −

ntr

Ntr
)− p ntr

Ntr
], and the system for n,p, and ntr is closed by integration of (2.3):

∂tntr = Rp −Rn. (2.7)

We now introduce a scaling of n, p, and ftr in order to render the equations (2.4)–(2.6)
dimensionless:

Scaling of parameters:

Mtr →
Ntr

Ec − Ev
Mtr, τn,p → τ̄ τn,p, µn,p → µ̄µn,p, (n0, p0, C) → C̄(n0, p0, C).

Scaling of unknowns:
(n, p) → C̄(n, p), ntr → Ntrntr, V → UT V , ftr → ftr.

Scaling of independent variables:

E → Ev + (Ec − Ev)E, x →

√
µ̄UT C̄τ̄

Ntr
x, t → C̄

Ntr
τ̄ t.

Dimensionless parameters:

λ =

√
εsNtr

qC̄2µ̄τ̄
=

1
x̄

√
εsUT

qC̄
is the scaled Debye length, ε =

Ntr

C̄
is the ratio of the density

of traps to the typical doping density, and will be assumed to be small: ε<<1.

The scaled system reads:

ε∂tftr = Sp(p, ftr)− Sn(n, ftr), Sp =
1
τp

[
p0(1− ftr)− pftr

]
,

Sn =
1
τn

[
n0ftr − n(1− ftr)

]
,

(2.8)

∂tn = ∇ · Jn + Rn, Jn = µn(∇n− n∇V ), Rn =
∫ 1

0

SnMtr dE (2.9)

∂tp = −∇ · Jp + Rp, Jp = −µp(∇p + p∇V ), Rp =
∫ 1

0

SpMtr dE (2.10)

λ2∆V = n+εntr−p−C. (2.11)

By letting ε → 0 in (2.8) formally, we obtain ftr = τnp0+τpn
τn(p+p0)+τp(n+n0)

, and the reduced
system has the following form

∂tn = ∇ · Jn + R, (2.12)

∂tp = −∇ · Jp + R, (2.13)
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R(n, p) = (ni
2 − np)

∫ 1

0

Mtr(E)
τn(E)(p + p0(E)) + τp(E)(n + n0(E))

dE, (2.14)

λ2∆V = n− p− C. (2.15)

Note that if τn, τp, n0, p0 are independent from E or if there exists only one trap level,
then we would have the standard Shockley-Read-Hall model, with R = ni

2−np
τn(p+p0)+τp(n+n0)

.

Existence and uniqueness of solutions of the system (2.12)–(2.15) has been shown in [9].

3. Rigorous derivation of the drift diffusion Shockley-Read-Hall model.
We consider initial-boundary value problems with initial conditions

n(x, 0) = nI(x), p(x, 0) = pI(x), ftr(x,E, 0) = ftr,I(x,E) (3.1)

satisfying

N ≥ nI , pI ≥ 0, 0 ≤ ftr,I ≤ 1 (3.2)

and with mixed Dirichlet-Neumann boundary conditions on ∂Ω, i.e., let

n(x, t) = nD(x, t), p(x, t) = pD(x, t), V (x, t) = VD(x, t) x ∈ ∂ΩD ⊂ ∂Ω (3.3)

and

∂n

∂ν
=

∂p

∂ν
=

∂V

∂ν
= 0 on ∂ΩN := ∂Ω \ ∂ΩD, (3.4)

where ν is the outward unit normal vector along ∂ΩN .
The following assumptions on the data will be used: For the boundary data

nD, pD ∈ W 1,∞
loc (Ω× R+

t ), VD ∈ L∞loc(R
+
t ,W 1,6(Ω)), (3.5)

for the initial data

nI , pI ∈ H1(Ω) ∩ L∞(Ω), 0 ≤ ftr,I ≤ 1 , (3.6)∫
Ω

(nI + εntr(ftr,I)− pI − C) dx = 0 , if ∂Ω = ∂ΩN , (3.7)

for the doping profile

C ∈ L∞(Ω) , (3.8)

for the recombination-generation rate constants

n0, p0, τn, τp ∈ L∞((0, 1)) , τn, τp ≥ τmin > 0 . (3.9)

We permit the special cases that either ∂ΩD or ∂ΩN are empty. In particular, we
assume that either ∂ΩD has positive (d− 1)-dimensional measure, or it is empty. In the
second situation (∂ΩD empty) we have to assume total charge neutrality, i.e.,∫

Ω

(n + εntr − p− C) dx = 0. (3.10)
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The potential is then only determined up to a (physically irrelevant) additive constant.
We shall first prove local existence of solutions for fixed positive ε by a contraction

argument, following the lines of [4], [9]. We define the fixed point map F : {n, p, ftr} →
{u, v, utr} by the following:

Step 1: For n, p, ftr given (satisfying (3.10) if ∂Ω = ∂ΩN ), we obtain V by solving the
problem (2.11), (3.3), (3.4); if ∂ΩD has a positive measure, the solution exists and it is
unique for all t. For empty ∂ΩD the assumption (3.10) implies solvability and uniqueness
up to a constant, whose value is unimportant for the following.

Step 2: We obtain the new trap occupancy utr from

ε∂tutr =
1
τp

[
p0(1− utr)− putr

]
− 1

τn

[
n0utr − n(1− utr)

]
, (3.11)

utr|t=0 = ftr,I ,

the new electron density u from

∂tu = ∇ · (µn(∇u− n∇V )) + Rn(n, utr) , (3.12)

u|∂ΩD
= nD,

∂u

∂ν
|∂ΩN

= 0, u|t=0 = nI ,

and the new hole density v from

∂tv = ∇ · (µp(∇v + p∇V ) + Rp(p, utr) ,

v|∂ΩD
= pD,

∂v

∂ν
|∂ΩN

= 0, v|t=0 = pI .

For the fixed point argument we shall use the following norm:

‖(n, p, ftr)‖T = max
0≤t≤T

{
‖n(t)‖L2(Ω) + ‖p(t)‖L2(Ω) + ‖ftr(t)‖L2(Ω×(0,1))

}
+

 T∫
0

(
‖∇n(t)‖2L2(Ω) + ‖∇p(t)‖2L2(Ω)

)
dt

1/2

.
(3.13)

Note that the property (3.10) is preserved in case of a pure Neumann problem. We now
show that the map F is contractive for a sufficiently small time interval (0, T ) on a ball
with sufficiently large radius a around the initial data (considered as constant functions
of time):

Ma := {(n, p, ftr) : 0 ≤ ftr ≤ 1, ‖(n− nI , p− pI , ftr − ftr,I)‖T ≤ a}. (3.14)

First, let us show that F maps Ma into itself. We observe that the equation for utr

preserves the natural bounds for the initial data: 0 ≤ utr ≤ 1. Multiplication of (3.11)
by utr − ftr,I and straightforward estimation gives

max
[0,T ]

‖utr − ftr,I‖L2(Ω×(0,1)) ≤
Tγ(a)

ε
≤ a

5
, (3.15)

for any a by choosing T small enough.
Multiplication of (3.12) by u − nD (nD = 0 for the pure Neumann problem) and

integration by parts gives

1
2

d
dt

∫
Ω

(u− nD)2 dx =− µn

∫
Ω

|∇u|2 dx + µn

∫
Ω

∇u · (n∇V +∇nD)

− µn

∫
Ω

n∇V · ∇nD dx +
∫

Ω

(u− nD)(Rn − ∂tnD) dx

(3.16)
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For estimating the right hand side we use the Cauchy-Schwarz inequality, the assumptions
on boundary and initial data, the estimate |Rn(n, utr)| ≤ C(n + 1), and the fact that
(n, p, ftr) ∈ Ma:

1
2

d
dt
‖u− nD‖2L2(Ω) ≤−

µn

2
‖∇(u− nI)‖2L2(Ω) + C(γ(a)

+ ‖n∇V ‖2L2(Ω) + ‖u− nD‖2L2(Ω)) .
(3.17)

For estimating the nonlinear term n∇V we employ the Hölder inequality, the Gagliardo-
Nirenberg inequality, the Poisson equation, and the Sobolev imbedding theorem:

‖n∇V ‖L2(Ω) ≤‖n‖L3(Ω)‖∇V ‖L6(Ω)

≤(C(δ)‖n‖L2(Ω) + δ‖∇n‖L2(Ω))(‖n + p‖L2(Ω) + ‖ftr‖L2(Ω×(0,1)) + 1),
(3.18)

for any δ > 0, which leads to the estimate (using the definition of Ma)∫ T

0

‖n∇V ‖2L2(Ω)dt ≤ γ(a)(TC(δ) + δ) . (3.19)

As a consequence, the Gronwall lemma applied to (3.17) implies

max
[0,T ]

‖u− nD‖2L2(Ω) ≤ ‖nI − nD‖2L2(Ω) + γ(a)(r(T )C(δ) + δ) , (3.20)

with r(T ) → 0 for T → 0, and, therefore,

max
[0,T ]

‖u− nI‖2L2(Ω) ≤ 2‖nI − nD‖2L2(Ω) + γ(a)(r(T )C(δ) + δ) ≤ a2

25
, (3.21)

where the last inequality is achieved by first choosing a big enough, then δ small enough,
and then T small enough.

Analogously, we prove

max
[0,T ]

‖v − pI‖L2(Ω) ≤
a

5
. (3.22)

As for the integral terms in the norm, we obtain from (3.17) after integration with
respect to time

µn

2

∫ T

0

‖∇(u− nI)‖2L2(Ω) dt ≤ 1
2
‖nI − nD‖2L2(Ω) + Tγ(a) ≤ µn

2
a2

25
,

such that (∫ T

0

‖∇(u− nI)‖2L2(Ω) dt

)1/2

≤ a

5
. (3.23)

Note that again a has to be chosen big enough, and T small enough. The same estimate
holds for ∇(v − pI). Combining it with (3.15), (3.21), (3.22), and (3.23), F : Ma → Ma

has been proven.
The next step is to prove that F is a contraction. For the components of the difference

(δu, δv, δutr) = F (n1, p1, ftr,1)− F (n2, p2, ftr,2) (3.24)
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we obtain the problems

ε∂tδutr = −κδutr + Anδn + Apδp , (3.25)
δutr|t=0 = 0,

with κ = p0+p1
τp

+ n0+n1
τn

, An = 1−utr,2
τn

, Ap = −utr,2
τp

, δn = n1 − n2 etc., for δutr,

∂tδu = ∇ · (µn(∇δu− n1∇δV − δn∇V2)) + Rn(n1, utr,1)−Rn(n2, utr,2) (3.26)

δu|∂ΩD
= 0,

∂δu

∂ν
|∂ΩN

= 0, δu|t=0 = 0 ,

for δu, and

∂tδv = ∇ · (µp(∇δv + p1∇δV + δp∇V2)) + Rp(p1, utr,1)−Rp(p2, utr,2) (3.27)

δv|∂ΩD
= 0,

∂δv

∂ν
|∂ΩN

= 0, δv|t=0 = 0 ,

for δv.
The following estimates are very similar to the above. Multiplication of (3.25) by

δutr and a simple estimation shows that

max
[0,T ]

‖δutr‖L2(Ω×(0,1)) ≤
r(T )

ε
‖(δn, δp, δftr)‖T , (3.28)

with limT→0 r(T ) = 0.
Multiplying (3.26) with δu, integrating with respect to x and t, we obtain

1
2
‖δu(t)‖2L2(Ω) +

µn

2

∫ t

0

‖∇δu(s)‖2L2(Ω) ds

≤ C

∫ t

0

(
‖δn∇V2‖2L2(Ω) + ‖n1∇δV ‖2L2(Ω)

+‖δn‖2L2(Ω) + ‖δftr‖2L2(Ω) + ‖δu‖2L2(Ω)

)
ds.

(3.29)

The first two terms on the right hand side we estimate analogously to (3.18), leading to∫ t

0

(
‖δn∇V2‖2L2(Ω) + ‖n1∇δV ‖2L2(Ω) + ‖δn‖2L2(Ω) + ‖δftr‖2L2(Ω)

)
ds

≤ (r(T )C(δ) + δ)‖(δn, δp, δftr)‖T .

Application of the Gronwall lemma to (3.29), the analogous estimate for δv, and a
combination of these results with (3.28) finally lead to

‖(δu, δv, δutr)‖T ≤
(

r(T )C(δ)
ε

+ δ

)
‖(δn, δp, δftr)‖T . (3.30)

By choosing first δ and then T sufficiently small, F can be made contractive in Ma.
Summarizing, the following local existence result has been proven.

Theorem 3.1. Let the assumptions (3.5)–(3.9) hold. Then there exists T > 0, such
that the problem (2.8)–(2.11), (3.1)–(3.4) has a unique solution with n, p ∈ C([0, T ],
L2(Ω)) ∩ L2((0, T ),H1(Ω)), ftr ∈ C([0, T ], L2(Ω× (0, 1))), 0 ≤ ftr ≤ 1.
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It is obvious from (3.30) that the local existence result does not come with a uniform in
ε estimate. Even the guaranteed existence time tends to zero with ε. The following global
existence result with uniform (in ε) bounds is a generalization of [5, Lemma 3.1], where
the case of homogeneous Neumann boundary conditions and vanishing recombination was
treated. Our proof uses a similar approach and can be found in [10].

Lemma 3.2. Let the assumptions of Theorem 3.1 be satisfied. Then, the solution of
(2.8)–(2.11), (3.1)–(3.4) exists for all times and satisfies n, p ∈ L∞loc((0,∞), L∞(Ω)) ∩
L2

loc((0,∞),H1(Ω))) uniformly in ε as ε → 0 as well as 0 ≤ ftr ≤ 1.

Finally, we write the main theorem, and the proof is also to be found in [10]:

Theorem 3.3. Let the assumptions of Theorem 3.1 be satisfied. Then, as ε → 0,
for every T > 0, the solution (ftr, n, p, V ) of (2.8)–(2.11), (3.1)–(3.4) converges with
convergence of ftr in L∞((0, T )×Ω× (0, 1)) weak*, n and p in L2((0, T )×Ω), and V in
L2((0, T ),H1(Ω)). The limits of n, p, and V satisfy (2.12)–(3.4).
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