
EQUADIFF 11

Emil Minchev
Systems for phase transitions with hysteresis effect

In: Marek Fila and Angela Handlovičová and Karol Mikula and Milan Medveď and Pavol Quittner and Daniel Ševčovič
(eds.): Proceedings of Equadiff 11, International Conference on Differential Equations. Czecho-Slovak series,
Bratislava, July 25-29, 2005, [Part 2] Minisymposia and contributed talks. Comenius University Press, Bratislava,
2007. Presented in electronic form on the Internet. pp. 283--291.

Persistent URL: http://dml.cz/dmlcz/700423

Terms of use:
© Comenius University, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital
signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/700423
http://project.dml.cz


Proceedings of Equadiff-11
2005, pp. 283–291

ISBN 978-80-227-2624-5

SYSTEMS FOR PHASE TRANSITIONS WITH HYSTERESIS EFFECT

EMIL MINCHEV∗

Abstract. The paper deals with a system of nonlinear PDEs which describes a phase transition model
with vector hysteresis and diffusion effect. Existence of solutions for the system under consideration is
obtained by the method of Yosida approximation, L∞-energy method and energy type inequalities in
L2. Uniqueness result has been obtained in the case when the coefficient of the interfacial energy in the
kinetics equation of the order parameter is zero. Results on existence and uniqueness are given also for
the ODE system analogue.
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1. Introduction. The present paper deals with a system of nonlinear PDEs which
is a model of a class of phase transitions where the hysteresis and diffusive effects are
taken into account:

awt − κ∆w + ∂IK(u)(w) 3 F(w, u) in Q, (1.1)

c ·wt + dut −∆u = h(w, u) in Q. (1.2)

Here N , m are positive integers, w = (w1, . . . , wm), T > 0, Ω ⊂ RN is a bounded domain
with smooth boundary ∂Ω, Q = (0, T )×Ω; a, κ, c = (c1, . . . , cm), d are given constants;
F : Rm × R → Rm, h : Rm × R → R, fi∗, fi

∗ : R → R (i = 1, . . . ,m) are given functions.
We assume that fi∗, fi

∗ ∈ C2(R), fi∗ ≤ fi
∗ on R and there exist constants ki > 0 such

that fi∗ = fi
∗ on (−∞,−ki] ∪ [ki,∞), i = 1, . . . ,m.

For each u ∈ R we denote by ∂I
(i)
u (·) the subdifferential of the indicator function

I
(i)
u (·) of the interval [fi∗(u), f∗i (u)], (i = 1, . . . ,m), namely,

I(i)
u (wi) =

{
0 if fi∗(u) ≤ wi ≤ f∗i (u)

+∞ otherwise

and

∂I(i)
u (wi) =



∅ if wi > f∗i (u) or wi < fi∗(u)

[0,+∞) if wi = f∗i (u) > fi∗(u)

{0} if fi∗(u) < wi < f∗i (u)

(−∞, 0] if wi = fi∗(u) < f∗i (u)

R if wi = f∗i (u) = fi∗(u).

Define K(u) = {w ∈ Rm : fi∗(u) ≤ wi ≤ fi
∗(u), i = 1, . . . ,m}.
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284 E. Minchev

We denote by IK(u)(·) the indicator function of the set K(u) and ∂IK(u)(·) denotes
the subdifferential of IK(u)(·). The subdifferential ∂IK(u)(w) is a set - valued mapping
and in our statement of the problem ∂IK(u)(w) = {0} if w ∈ intK, and ∂IK(u)(w)
coincides with the cone of normals to K at the point w if w ∈ ∂K. In our statement of
the problem it is easy to see that

∂IK(u)(w) = (∂I(1)
u (w1), . . . , ∂I(m)

u (wm)).

In this paper we study the system (1.1), (1.2) together with the following boundary
and initial conditions

∂w
∂ν

= 0,
∂u

∂ν
= 0 on Σ = (0, T )× ∂Ω, (1.3)

w(0, x) = w0(x), u(0, x) = u0(x) in Ω, (1.4)

where ν is the unit outward normal vector on ∂Ω, w0, u0 are given initial data.

The system (1.1), (1.2) is a model for solid-liquid phase transition of a multi – com-
ponent substance where we take into account the hysteresis effect in the evolution of the
interface. Equations (1.1) and (1.2) correspond respectively to the kinetics of the vector
order parameter w and the balance of the internal energy; u is the relative temperature
of the physical system under consideration. The right hand sides of the equations of
system (1.1), (1.2) describe possible nonlinearities respectively in the kinetics of the order
parameter and the external energy suply.

The hysteresis effect is described by the term ∂IK(u)(w) in differential inclusion (1.1).
It is known that some types of hysteresis operators can be represented by ordinary (or par-
tial) differential inclusion containing subdifferential of the indicator function of a closed
set (whose shape could possibly depend on the unknown variables). Let us note that this
characterization of hysteresis operators was used for analysis of many nonlinear phenom-
ena, for example, a real-time control problems (see [9]), solid-liquid phase transitions (see
[7], [19]), shape memory alloys (see [1]), filtration problems (see [14]). Very recently this
approach has been used to study the phenomena of hysteresis in processes in population
dynamics (see [2], [23]).

Differential inclusion (1.1) decribes the relaxation dynamics of the vector order param-
eter. The relation assigning to a function u(t) the solution w(t) of differential inclusion
(1.1) corresponds to generalized vector play hysteresis operator which is often used to
describe solid-liquid phase transitions with supercooling effect and martensite-austenite
phase transitions in shape memory allows. Let us note that models with hysteresis are ob-
ject of active recent investigations (see papers [8], [10], [12], [13] as well as the monographs
[5], [11], [18], [24]).

Various special cases of the system (1.1),(1.2) have been already studied. In [7],
P. Colli, N. Kenmochi and M. Kubo studied the following system

awt − κ∆w + ∂Iu(w) 3 F (w, u) in Q,

cwt + dut −∆u = g(x, t) in Q

as a model for Stefan problem with phase relaxation and temperature dependent con-
straint for the scalar order parameter. Later, M. Kubo in [14] studied filtration problems
with hysteresis described by similar systems with convective term (we refer the reader
also to the papers [8], [9], the monograph [5] as well as the references therein).
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Recently, in [23], M. Ôtani studied the following nonlinear parabolic system with
hysteresis effect

wt −∇ · (∇w + ~λ(w)) + ∂IU (w) 3 F (w,U) in Q,

uit −∇ · (∇ui + ~µi(ui)) = hi(w,U) in Q, i = 1, . . . ,m,

which is a model for population interaction with hysteresis effect of 1+m biological species
with densities (w,U), U = (u1, . . . , um). To this end in [23], a further extention of the
recently proposed L∞-energy method is developed. It should be noted that the L∞-energy
method (proposed in [22], [23] and the references therein) was found to an be effective tool
applicable to various types of parabolic equations and systems including doubly nonlinear
parabolic equations, porous medium equations, strongly nonlinear parabolic equations
governed by the ∞-Laplacian, complicated parabolic systems from applied sciences, etc.

In mathematical aspect the present paper has been influenced mainly by the papers
[23] and [7]. Using the L∞-energy method we will obtain results for boundedness and
existence of solutions of the system (1.1)–(1.4). As concerns for uniqueness, the result
presented here is based on the method of L1-semigroups proposed in [8], and later develop
in [7].

Detailed proofs of the results presented in this paper can be found in [20] and [21].

2. Preliminary Notes. Denote by H the Hilbert space L2(Ω) with the usual scalar
product (·, ·)H and norm | · |H , and by H the product space H × · · · × H (m-times).
Denote by V the Sobolev space H1(Ω) equipped with the norm |u|V = (u, u)1/2

V , where
(u, v)V = (u, v)H +a(u, v), a(u, v) =

∫
Ω
∇u(x) ·∇v(x)dx, u, v ∈ V , and by V the product

space V × · · · × V (m-times).
We give the definition of solutions in a weak (variational) sense for the system (1.1)–

(1.4).

Definition 2.1. Let κ > 0. A pair of functions {w, u}, (w = (w1, . . . , wm)) is called a
solution of the system (1.1)–(1.4) if:

(i) wi, u ∈ L∞(0, T ;V ∩L∞(Ω))∩L2(0, T ;H2(Ω))∩W 1,2(0, T ;H), i = 1, . . . ,m.

(ii) awt − κ∆w + ∂IK(u)(w) 3 F(w, u) in H, a.e. in (0, T ).

(iii) c ·wt + dut −∆u = h(w, u) in H, a.e. in 0, T ).

(iv)
∂wi

∂ν
= 0,

∂u

∂ν
= 0 in L2(∂Ω), a.e. in (0, T ), i = 1, . . . ,m.

(v) w(0) = w0, u(0) = u0.

For simplicity of the notation we will denote in the sequel by w′ and u′ the time-
derivatives wt and ut of w and u, respectively.

Note that the inclusion (ii) is equivalent to the following conditions:
(ii)–(a) w ∈ K(u) a.e. in Q.
(ii)–(b) (aw′(t)−κ∆w(t)−F(w(t), u(t)),w(t)−z) ≤ 0 for all z ∈ H with z ∈ K(u(t))

a.e. in Ω for a.e. t ∈ (0, T ).

Throughout the paper we suppose that the following assumptions hold:

H1. a > 0, ci 6= 0, d > 0 are given constants, i = 1, . . . ,m.
H2. fi∗, fi

∗ ∈ C2(R) are such that fi∗ ≤ fi
∗ on R and there exist constants ki > 0

such that fi∗(u) = fi
∗(u) = riu + si on (−∞,−ki] and fi∗(u) = fi

∗(u) = piu + qi

on [ki,∞), where ri, si, pi, qi are given constants, i = 1, . . . ,m. Moreover, if ci > 0
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(ci < 0) then fi∗, f∗i are assumed to be non-decreasing (non-increasing) functions on R,
i = 1, . . . ,m.

H3. w0i, u0 ∈ L∞(Ω)∩V , i = 1, . . . ,m and w0 ∈ K(u0) a.e. in Ω, w0 = (w01, . . . , w0m).

H4. F and h are locally Lipschitz continuous functions from Rm×R into Rm and R,
respectively.

H5. There exist positive constants CF and Ch such that Fi(w, u)wi ≤ CF(|wi|2 +
|u|2 + 1), i = 1, . . . ,m, and h(w, u)u ≤ Ch(|w|2 + |u|2 + 1), w ∈ Rm, u ∈ R.

3. Auxiliary Problems. Let M > 0 be a constant large enough which is to be
fixed later and consider the cut-off function:

χM (r) =


−M if r < −M

r if −M ≤ r ≤ M

M if r > M

and define the auxiliary functions

χM (wi)(t, x) = χM (wi(t, x)), (t, x) ∈ Q, i = 1, . . . ,m,

χM (w)(t, x) = (χM (w1)(t, x), . . . , χM (wm)(t, x)), (t, x) ∈ Q,

χM (u)(t, x) = χM (u(t, x)), (t, x) ∈ Q.

In this section we introduce an approximate system with approximation parameters
M and µ > 0. To this end for (w, u) ∈ Rm × R we denote

∂Iµ
KM (u)(w) = (∂Iµ

u,M
(1)(w1), . . . , ∂Iµ

u,M
(m)(wm))

=
1
µ

(
[w1 − f∗1,M (u)]+ − [f1∗,M (u)− w1]+,

. . . , [wm − f∗m,M (u)]+ − [fm∗,M (u)− wm]+
)
,

and

Ju,Mw = (J (1)
u,Mw1, . . . , J

(m)
u,Mwm)

= (max{min{w1, f
∗
1,M (u)}, f1∗,M (u)}, . . . ,max{min{wm, f∗m,M (u)}, fm∗,M (u)}),

where f∗i,M (u) = f∗i (χM (u)), fi∗,M (u) = fi∗(χM (u)), i = 1, . . . ,m. Moreover, denote

Juw = (J (1)
u w1, . . . , J

(m)
u wm)

= (max{min{w1, f
∗
1 (u)}, f1∗(u)}, . . . ,max{min{wm, f∗m(u)}, fm∗(u)}).

Note that ∂Iµ
KM (u) is the Yosida regularization of the subdifferential graph of the

indicator function IKM (u) of the set

KM (u) = {w ∈ Rm : fi∗,M (u) ≤ wi ≤ f∗i,M (u), i = 1, . . . ,m}.
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Consider the following approximate system of PDEs

aw′ − κ∆w + ∂Iµ
KM (u)(w) = FM (w, u) in Q, (3.1)

c · (Juw)′ + du′ −∆u = hM,J(w, u) in Q, (3.2)
∂w
∂ν

= 0,
∂u

∂ν
= 0 on Σ, (3.3)

w(0, x) = w0(x), u(0, x) = u0(x) in Ω, (3.4)

where

FM (w, u) = F(χM (w), χM (u)), hM,J(w, u) = h(Ju,Mw, χM (u)).

4. Main results.

4.1. System (1.1)–(1.4) with κ > 0. We formulate the following:

Theorem 4.1. Suppose that assumptions H1–H5 are satisfied. Then there exists a
constant κ0 > 0 such that for each 0 < κ < κ0 the system (1.1)–(1.4) possesses at least
one solution.

4.2. System (1.1)-(1.4) with κ = 0. In this section consider the system (1.1)–(1.4)
with κ = 0, namely the following system

awt + ∂IK(u)(w) 3 F(w, u) in Q, (4.1)

c ·wt + dut −∆u = h(w, u) in Q. (4.2)

∂u

∂ν
= 0 on Σ = (0, T )× ∂Ω, (4.3)

w(0, x) = w0(x), u(0, x) = u0(x) in Ω. (4.4)

Definition 4.2. A pair of functions {w, u} is called a solution of the system (4.1)–(4.4)
if:

(i) wi ∈ L∞(0, T ;L∞(Ω)) ∩W 1,2(0, T ;H), i = 1, . . . ,m.

(ii) u ∈ L∞(0, T ;V ∩ L∞(Ω)) ∩ L2(0, T ;H2(Ω)) ∩W 1,2(0, T ;H).

(iii) awt + ∂IK(u)(w) 3 F(w, u) in H, a.e. in (0, T ).

(iv) c ·wt + dut −∆u = h(w, u) in H, a.e. in (0, T ).

(v)
∂u

∂ν
= 0 in L2(∂Ω), a.e. in (0, T ).

(vi) w(0) = w0, u(0) = u0.

Theorem 4.3. Suppose that assumptions H1–H5 are satisfied. Then the system (4.1)–(4.4)
possesses a unique solution. Moreover, w ∈ L∞(0, T ;V).

4.3. Local solutions. If we suppose in Theorems 4.1 and 4.3 that the functions F,
h are locally Lipschitz continuous functions on Rm×R (without any growth conditions), it
can be proved existence of local solutions of the respective systems, namely, the following
theorems hold true:

Theorem 4.4. Suppose that assumptions H1–H4 are satisfied. Then there exist a
positive number T0 (depending only on |w0|∞ and |u0|∞) as well as a constant κ0 > 0
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such that for each 0 < κ < κ0 the system (1.1)–(1.4) possesses at least one solution on
[0, T0]× Ω.

Theorem 4.5. Suppose that assumptions H1–H4 are satisfied. Then there exists a
positive number T0 (depending only on |w0|∞ and |u0|∞) such that the system (4.1)–(4.4)
possesses a unique solution on [0, T0]× Ω.

5. Remarks for the ODE case. This section deals with the following class of
systems of nonlinear ordinary differential equations (ODEs) with hysteresis effect:

a(w(t), u(t))w′(t) + ∂Iu(t)(w(t)) 3 g(w(t), u(t)), 0 < t < T, (5.1)

c(w(t), u(t))w′(t) + d(w(t), u(t))u′(t) = h(w(t), u(t)), 0 < t < T, (5.2)

with initial conditions:

w(0) = w0, u(0) = u0, (5.3)

where T > 0, a, c, d, g, h : R2 → R, f∗, f
∗ : R → R are given functions such that f∗ ≤ f∗

on R and there exists a constant k0 > 0 such that f∗ = f∗ on (−∞,−k0] ∪ [k0,∞).
For each u ∈ R we denote by ∂Iu(·) the subdifferential of the indicator function Iu(·)

of the interval [f∗(u), f∗(u)].
The system (5.1)–(5.3) was studied in [24] in the partucular case when a ≡ 1, c ≡ 1,

d ≡ 1, g ≡ 0 and h ≡ 0. The idea for uniqueness proof is based on the L1-theory of
nonlinear semigroups (cf. [8], [24]). Very recently the system (5.1)–(5.3) was considered
in [10] in a general framework, where existence and uniqueness results as well as numerical
simulation of the solutions are presented. However, the assumption of global Lipschitz
continuity of the coefficient functions, the right-hand sides and the constraint functions
is essential for the existence proof presented in [10]. In the present section, based on
the L∞-energy method approach presented in [23], we will formulate results for local and
global existence as well as uniqueness of the solutions of the ODEs system with hysteresis
effect under the relaxed assumption of local Lipschitz continuity of all functions involved
in (5.1)–(5.3). However, we must note that local Lipschitz continuity will imply existence
of local solutons, while to get global solutions, certain growth assumptions on the right-
hand sides are to be supposed (cf. [23]).

We give the definition of solutions of the system (5.1)–(5.3).

Definition 5.1. A pair of functions {w, u} is called a solution of the system (5.1)–
(5.3) if: w, u ∈ W 1,2(0, T ); {w, u} satisfy (5.1), (5.2) a.e. on [0, T ] as well as the initial
condition (5.3).

Introduce the following assumptions:

H6. f∗, f
∗ are nondecreasing and locally Lipschitz continuous functions on R such

that f∗ ≤ f∗ on R, there exists a constant k0 > 0 such that f∗ = f∗ on (−∞,−k0]∪[k0,∞)
and f∗(u0) ≤ w0 ≤ f∗(u0).

H7 The derivatives f ′∗, f
∗′ are locally Lipschitz continuous functions on R and

there exists a positive constant µ0 such that

d(f∗(u), u) + c(f∗(u), u)f ′∗(u) ≥ µ0,

d(f∗(u), u) + c(f∗(u), u)f∗′(u) ≥ µ0

for any u ∈ R.
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H8. a, c, d are locally Lipschitz continuous functions on R2 and there exists a
positive constant c0 such that a ≥ c0 and d ≥ c0 on R2.

H9. g, h are locally Lipschitz continuous functions on R2 such that g(w,u)w
a(w,u) ≤

Cg,a(|w|2 + |u|2 + 1), h(w, u)u ≤ Ch(|w|2 + |u|2 + 1), where Cg,a, Ch are positive
constants, w ∈ R, u ∈ R.

H10. |f∗(u)| ≤ Cf (|u|+ 1) on (−∞,−k0]∪ [k0,∞), where Cf is a positive constant.
Let M > 0 be a constant large enough which is to be fixed later and consider the

cut-off function:

χM (r) =


−M if r < −M

r if −M ≤ r ≤ M

M if r > M

and define the auxiliary functions

χM (w)(t) = χM (w(t)), 0 < t < T,

χM (u)(t) = χM (u(t)), 0 < t < T.

We introduce an approximate system with approximation parameters M and µ > 0. For
w ∈ R, u ∈ R we denote:

∂Iµ
u,M (w) =

1
µ

[w − f∗M (u)]+ − 1
µ

[f∗,M (u)− w]+,

and

Ju,Mw = max{min{w, f∗M (u)}, f∗,M (u)},

where f∗M (u) = f∗(χM (u)), f∗,M (u) = f∗(χM (u)). Note that ∂Iµ
u,M is the Yosida regular-

ization of the subdifferential graph of the indicator function of the interval [f∗,M (u), f∗M (u)].
Consider the following approximate system of ODEs

w′(t) + ∂Iµ
u,M (w(t)) =

gM (w(t), u(t))
aM (w(t), u(t))

, 0 < t < T, (5.4)

cM,J(w(t), u(t))(Ju,Mw)′(t) + dM,J(w(t), u(t))u′(t) = hM,J(w(t), u(t)), 0 < t < T, (5.5)

w(0) = w0, u(0) = u0, (5.6)

where

aM (w, u) = a(χM (w), χM (u)),

cM,J(w, u) = c(Ju,Mw,χM (u)), dM,J(w, u) = d(Ju,Mw,χM (u)),

gM (w, u) = g(χM (w), χM (u)), hM,J(w, u) = h(Ju,Mw,χM (u)).

Theorem 5.2. Suppose that assumptions H6–H10 are satisfied. Then:

1. The system (5.1)–(5.3) possesses at least one solution.

2. The system (5.1)–(5.3) possesses a unique solution if c ≥ c0 on {(w, u) ∈ R2 :
f∗(u) ≤ w ≤ f∗(u)}.
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3. The system (5.1)–(5.3) possesses a unique solution if c ≡ 0 on {(w, u) ∈ R2 :
f∗(u) ≤ w ≤ f∗(u)}.

Remark. Assumptions H9, H10 in Theorem 5.2 can be replaced by the following
assumption:

H11. g, h are locally Lipschitz continuous functions on R2 such that g(w,u)w
a(w,u) ≤

Cg,a(|w|2 + 1), h(w, u)u ≤ Ch(|u|2 + 1), where Cg,a, Ch are positive constants, w ∈ R,
u ∈ R.

Theorem 5.3. Suppose that assumptions H6–H8, H11 are satisfied. Then:

1. The system (5.1)–(5.3) possesses at least one solution.

2. The system (5.1)–(5.3) possesses a unique solution if c ≥ c0 on {(w, u) ∈ R2 :
f∗(u) ≤ w ≤ f∗(u)}.

3. The system (5.1)–(5.3) possesses a unique solution if c ≡ 0 on {(w, u) ∈ R2 : f∗(u) ≤
w ≤ f∗(u)}.

Remark. If we suppose in Theorem 5.2 that the functions g, h are locally Lipschitz
continuous functions on R2 (without any growth conditions), it can be proved existence
of local solutions of the system (5.1)–(5.3).

Theorem 5.4. Suppose that assumptions H6–H8 are satisfied and the functions g, h
are locally Lipschitz continuous functions on R2. Then there exists a positive number T0

(depending only on the initial data) such that:

1. The system (5.1)–(5.3) possesses at least one solution on [0, T0].

2. The system (5.1)–(5.3) possesses a unique solution on [0, T0] if c ≥ c0 on
{(w, u) ∈ R2 : f∗(u) ≤ w ≤ f∗(u)}.

3. The system (5.1)–(5.3) possesses a unique solution on [0, T0] if c ≡ 0 on
{(w, u) ∈ R2 : f∗(u) ≤ w ≤ f∗(u)}.
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