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CONVERGENCE IN EVOLUTIONARY VARIATIONAL INEQUALITIES
WITH HYSTERESIS NONLINEARITIES∗

VOLKER REITMANN†

Abstract. Sufficient frequency-domain conditions for the convergence of solutions of evolutionary
variational inequalities with hysteresis nonlinearities to stationary solutions are derived. The convergence
is considered in non-standard chains of rigged Hilbert spaces. Monotonicity properties of operators are
introduced with respect to the pairing between different spaces of such chains.
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1. Introduction. We investigate the convergence of solutions of a class of evolution-
ary variational inequalities with hysteresis nonlinearities using absolute stability methods.
For the ODE-case this was firstly done by V. A. Yakubovich in [14]. We generalize one of
his results to variational inequalities. For the case of almost-periodic solutions this was
done in [9]. In the absolute stability approach some properties of the hysteresis operator
are characterized by quadratic constraints. Then the solvability of special operator Lur’e
inequalities ([6]), introduced with respect to the “linear part” of the variational inequality
and the quadratic constraints, is used to construct non-standard Gelfand riggings of a
given Hilbert space. This allows us to describe monotonicity and regularity properties of
operators with respect to the constructed chain and to show the convergence of solutions
to equilibria in some energy-like spaces. As a consequence, our sufficient condition for
convergence is satisfied for some variational inequalities (or variational equations) with
operators which are not monotone or maximal monotone with respect to standard scalar
products ([3, 4, 11]).

2. Non-standard Gelfand riggings generated by Lyapunov operators. Con-
sider the Gelfand rigging of a real Hilbert space Y0, i.e. a chain

Y1 ⊂ Y0 ⊂ Y−1 (2.1)

in which Y1 (“positive” space) and Y−1 (“negative” space) are further real Hilbert spaces
and the inclusions are dense and continuous. Let (·, ·)i and ‖ · ‖i, i = 1, 0,−1, denote the
scalar product and the norm in Yi, respectively. Continuity of the inclusions means that
there are constants c1 > 0 and c2 > 0 such that

‖y‖0 ≤ c1‖y‖1 , ∀ y ∈ Y1 (2.2)

and

c2‖u‖−1 ≤ ‖u‖0 , ∀ u ∈ Y0 . (2.3)
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396 V. Reitmann

Suppose that the rigging (2.1)–(2.3) is realized in the following sense ([2, 13]). Assume
that from the inclusion chain (2.1) only Y1 ⊂ Y0 is given and (2.2) is satisfied, for sim-
plicity, with c1 = 1. We introduce on Y0 a second norm by

‖y‖−1 := sup
0 6=η∈Y1

|(y, η)0|
‖η‖1

(2.4)

and denote by Y−1 the completion of Y0 with respect to this norm. Then Y−1 can be taken
as third space in the Gelfand rigging (2.1) (see [2, 13]). This space can be considered as
dual to Y1 with respect to Y0, i.e. when the duality of Y1 and Y−1 is written in terms
of Y0. Extending by continuity the function (u, v)0 onto Y−1 × Y1, we get the pairing
between Y−1 and Y1, i.e. the bilinear form (·, ·)−1,1 on Y−1 × Y1 which coincides with
(·, ·)0 on Y0 × Y1 and which satisfies the inequality

|(ζ, y)−1,1| ≤ ‖ζ‖−1‖y‖1 , ∀ ζ ∈ Y−1, ∀ y ∈ Y1 . (2.5)

With respect to the chain (2.1) we consider the three linear operators

A ∈ L(Y1, Y−1) , B ∈ L(R, Y−1) , C ∈ L(Y0,R) . (2.6)

In the control theory setting we call it system, input and observation operator,
respectively. Using such a framework, certain boundary control problems for parabolic
systems can be studied ([7, 10]).

Together with the operator A ∈ L(Y1, Y−1) we also need the adjoint with respect to
Y0 operator A+ ∈ L(Y1, Y−1) which is given by the relation ([2])

(Ay, η)−1,1 = (A+η, y)−1,1 , ∀ y, η ∈ Y1 . (2.7)

If A+ = A the operator A is called self-adjoint with respect to Y0. The adjointness with
respect to Y0 can be introduced similarly for linear operators acting between other spaces
in the chain (2.1).

The construction of some auxilary evolutionary variational equation is based on the
following function spaces which we shortly introduce.

If −∞ ≤ T1 < T2 ≤ +∞ are two arbitrary numbers, we define the norm for Bochner
measurable functions ([13]) in L2(T1, T2;Yj) , j = 1, 0,−1, by

‖y‖2,j :=

(∫ T2

T1

‖y(t)‖2j dt

)1/2

. (2.8)

Let W(T1, T2) denote the space of functions y such that y ∈ L2(T1, T2;Y1) and
ẏ ∈ L2(T1, T2;Y−1) equipped with the norm

‖y‖W(T1,T2) :=
(
‖y‖22,1 + ‖ẏ‖22,−1

)1/2
. (2.9)

By an embedding theorem ([8, 13]) one can assume that any function from W(T1, T2)
belongs to C(T1, T2;Y0).

Throughout the paper we use the following assumptions about the operators A,B,C.

(A1) For any T > 0 and any f ∈ L2(0, T ;Y−1) the problem

ẏ = Ay + f(t) , y(0) = y0 (2.10)
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is well-posed, i.e. for arbitrary y0 ∈ Y0, f ∈ L2(0, T ;Y−1) there exists a unique solution
y ∈ W(0, T ) satisfying (2.10) in a variational sense and depending continuously on the
initial data, i.e.

‖y(·)‖2W(0,T ) ≤ c1‖y0‖20 + c2‖f(·)‖22,−1 , (2.11)

where c1 > 0 and c2 > 0 are some constants.

(A2) The operator A is Hurwitz, i.e. any solution of

ẏ = Ay, y(0) ∈ Y0 , (2.12)

is exponentially decreasing for t→ +∞.

(A3) The operator A ∈ L(Y1, Y−1) is regular ([6, 7]), i.e. for any T > 0,
y0 ∈ Y1, zT ∈ Y1 and f ∈ L2(0, T ;Y1) the solution of the direct problem (2.10) and the
solution of the adjoint problem (understood in the above sense)

ż = −A+z + f(t), z(T ) = zT , (2.13)

are strongly continuous in t in the norm of Y1.

(A4) The pair (A,B) is L2-controllable, i.e. for arbitrary y0 ∈ Y0 there exists a control
ξ(·) ∈ L2(0,∞; R) such that the problem

ẏ = Ay +Bξ, y(0) = y0 (2.14)

is well-posed in the variational sense on (0,+∞).

Let us denote by Hc and Lc the complexification of a linear space H and a linear operator
L, respectively, and introduce by

χ(s) = Cc(Ac − sIc)−1Bc, s ∈ ρ (Ac) (2.15)

the transfer operator function of the triple (Ac, Bc, Cc).

(A5) There exist numbers κ0 > 0 and β > 0 such that

1
κ0

+ Reχ(iω) > β , ∀ ω ∈ R . (2.16)

Theorem 2.1. Assume for the linear operators A ∈ L(Y1, Y−1), B ∈ L(R, Y−1) and
C ∈ L(Y0,R) that the assumptions (A1)–(A5) are satisfied. Then there exists an operator
P ∈ L(Y−1, Y0)∩L(Y0, Y1), self-adjoint and positive in Y0, and a number ε > 0 such that

(Ay +Bξ, Py)−1,1 + ξ(Cy − ξκ−1
0 ) ≤ −ε(‖y‖21 + ξ2), ∀ (y, ξ) ∈ Y1 × R . (2.17)

Proof. Consider in Y1×R the quadratic form F (y, ξ) = ξ(Cy−ξκ−1
0 ) and their Hermitian

extension F c(y, ξ) = Re(ξ∗Ccy)− |ξ|2κ−1
0 in Y c

1 ×C. From the Likhtarnikov-Yakubovich
theorem ([6]) it follows that under the conditions (A1), (A3), (A4) and the frequency-
domain condition

Re(ξ∗Ccy)− |ξ|2κ−1
0 < −β|ξ|2 , (2.18)

∀ ξ ∈ C \ {0} ∀ ω ∈ R ∀ y ∈ Y c
1 : iωy = Acy +Bcξ ,



398 V. Reitmann

there exists an operator P ∈ L(Y−1, Y0) ∩ L(Y0, Y1) self-adjoint in Y0, such that (2.17) is
satisfied. As it is easy to see, inequality (2.18) is equivalent to (2.16).

Let us show that P ≥ 0. Introduce on Y0 the Lyapunov functional V (y) := (y, Py)0.
Putting in (2.17) ξ = 0 we get the inequality

(Ay, Py)−1,1 ≤ −ε‖y‖21 , ∀ y ∈ Y1 . (2.19)

Thus we have along an arbitrary solution y(·) of ẏ = Ay with y(0) = y0 ∈ Y0 on an
interval [0, t] the inequality

V (y(t)) ≤ V (y0)− ε

∫ t

0

‖y(τ)‖21 dτ . (2.20)

From (A2) and (2.20) it follows for t→ +∞ that

0 ≤ V (y0)− ε

∫ ∞

0

‖y(τ)‖21 dτ .

But this implies that V (y0) > 0 if y0 6= 0.

The operator P from Theorem 2.1, positive and self-adjoint in Y0, satisfies the Lya-
punov inequality (2.19) and generates a Lyapunov (or energy) functional V (y) = (y, Py)0.
For this reason we call P Lyapunov operator.

In the following we suppose the properties (A1)–(A5). Thus we can assume that
there exists a Lyapunov operator P and a number ε > 0 satisfying (2.17). Note that the
operator P can be explicitly determined as solution of a Hamiltonian system of equations
([6]). The number ε > 0 can be estimated with the knowledge of β. Our aim is to
derive with the help of P a new Gelfand chain from (2.1) which is better adapted to the
nonlinear system which will be investigated in Sec. 3.

Consider in Y0 the new scalar product (·, ·)0,P given by

(y, η)0,P := (y, Pη)0 , ∀ y, η ∈ Y0 .

The associated norm is denoted by ‖·‖0,P . The completion of Y0 w.r.t. the scalar product
(·)0,P gives the Hilbert space Y0,P . The space Y1 is dense in Y0,P since Y1 is dense in Y0

and Y0 is dense in Y0,P . By (2.2) and the boundedness of P it follows that for all y ∈ Y1

‖y‖0,P = (y, Py)1/2
0 ≤ ‖P‖1/2‖y‖0 ≤ ‖P‖1/2c1‖y‖1 . (2.21)

But this means that the inclusion Y1 ⊂ Y0,P is continuous. Thus we can continue the
inclusion Y1 ⊂ Y0,P to a Gelfand rigged chain

Y1 ⊂ Y0,P ⊂ Y−1,P (2.22)

of Hilbert spaces. In order to define the negative space in this chain explicitly we introduce
([2]) on Y0,P the negative norm ‖ · ‖−1,P given on Y0,P by

‖y‖−1,P := sup
0 6=η∈Y1

|(y, η)0,P |
‖η‖1

. (2.23)

The completion of Y0,P in this norm gives the negative space Y−1,P in the chain (2.22).
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Let us denote the pairing between Y−1,P and Y1 by (·, ·)−1,P ;1. We extend by conti-
nuity the operators A,B and C from (2.6) to operators

AP ∈ L(Y1, Y−1,P ) , BP ∈ L(R, Y−1,P ) , CP ∈ L(Y0,P ,R) . (2.24)

Denote for −∞ ≤ T1 < T2 ≤ +∞ by L2(T1, T2;Yj) with j = 0, P and j = −1, P the
Bochner measurable functions for which the norm ‖ · ‖2,j , defined by (2.8), is finite. Let
WP (T1, T2) be the space of functions such that

y ∈ L2(T1, T2;Y1) and ẏ ∈ L2(T1, T2;Y−1,P ) ,

equipped with the norm

‖y‖Wp(T1,T2) := (‖y‖22,1 + ‖ẏ‖22,−1,P )1/2 .

3. Variational inequalities with hysteresis nonlinearities related to non-
standard Gelfand riggings. Assume that there are linear operators (2.6) satisfying
(A1)–(A5). As it was shown in Sec. 2, under these assumptions there exists a nonstan-
dard Gelfand rigging (2.22) and the operator extensions (2.24). These operators will play
the role of the “linear part” of our evolutionary variational inequality.

Assume further that

ϕ : D(ϕ) ⊂ C([0,∞))× R → C([0,∞)) (3.1)

is a hysteresis operator which has the following properties:

(P1) The domain of definition of (3.1) is given by the set-valued function
E : R → 2R, i.e.

D(ϕ) =
{
(w, ξ0) ∈ C([0,∞))× R

∣∣ ξ0 ∈ E(w(0))
}
.

The operator ϕ is causal, that is if (wi, ξ0) ∈ D(ϕ), i = 1, 2, and w1 ≡ w2 on [0, t) then
ϕ(w1, ξ0)(t) = ϕ(w2, ξ0)(t).

(P2) For any T > 0 the operator ϕ is regarded as map from {(w|[0,T ], ξ0) | (w, ξ0) ∈
D(ϕ)} into C([0, T ]) satisfying with the constant κ0 > 0 from Theorem 2.1 the inequality

‖ϕ(w1, ξ0)− ϕ(w2, ξ0) ‖C([0,T ]) ≤ κ0‖w1 − w2‖C([0,T ])

for any (wi, ξ0) ∈ D(ϕ), i = 1, 2.
For any (w, ξ0) ∈ D(ϕ) with w ∈ W 1,1(0, T ) the function ξ(t) ≡ ϕ(w, ξ0)(t) belongs also
to W 1,1(0, T ) and satisfies

0 ≤ ξ̇(t)ẇ(t) ≤ κ0ẇ(t)2 (3.2)

for a.a. t ≥ 0.

(P3) ϕ is limit-continuous ([14]), i.e. any w ∈ W 1,2(0,∞; R) with w(t) → w∞ and
ϕ(w, ξ0)(t) → ξ∞ for t→∞ implies that ξ∞ ∈ E(w∞) and ϕ(w∞, ξ∞)(t) ≡ ξ∞.

Let ψ : Y1 → R∪{+∞} be a proper and lower-semicontinuous function with domain

D(ψ) 6= ∅. We suppose that ψ is continuous on D(ψ)
Y0,P (the closure in Y0,P ). For any

y ∈ Y1 the subdifferential ∂ψP (y) of ψ at y with respect to the pairing (·, ·)−1,P ;1 between
Y−1,P and Y1 is the set of all ζ ∈ Y−1,P such that

ψ(y) ≤ ψ(η) + (ζ, y − η)−1,P ;1 , ∀ η ∈ Y1 . (3.3)
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It follows immediately from (3.3) that ∂ψP is a monotone (possibly multivalued) operator
from Y1 to Y−1,P with respect to the pairing (·, ·)−1,P ;1. It is easy to see that in case when
P = P ∗ : Y0 → Y0 is invertible, the subdifferential ∂Pψ(y) with respect to the pairing
(·, ·)−1,P ;1 is given by ∂Pψ(y) = P−1∂ψ(y), where ∂ψ(y) is the usual subdifferential of ψ
at y.

Let us introduce the following property for ψ.

(P4) For any y ∈ Y1 the subdifferential ∂Pψ(y) at y with respect to the pairing
(·, ·)−1,P ;1 is maximal monoton.

Note that in the case when P = I condition (P4) can be expressed by the convexity
and lower-semicontinuity of ψ. Consider on an arbitrary interval (0, T ) the evolutionary
variational inequality

(ẏ −AP y −BP ξ(t), η − y)−1,P ;1 + ψ(η)− ψ(y) ≥ 0 ,

ξ(t) = ϕ(w, ξ0)(t) , w(t) = CP y(t) ,

y(0) = y0 ∈ D(ψ)
Y0,P

, ξ0 ∈ E(w(0)) , ∀ η ∈ Y1 , a.a. t ∈ (0, T ) .

(3.4)

A pair of functions {y, ξ} ∈ WP (0, T )∩C(0, T ;Y0,P )×W 1,2(0, T ; R) which satisfies (3.4)
is called solution of the variational inequality on (0, T ) with initial state {y0, ξ0}.

Note that (3.4) can be understood as generalization of the following standard varia-
tional inequality.

Consider with respect to the chain (2.1), the linear operators (2.6), the hysteresis
operator ϕ, and the function ψ the variational inequality

(ẏ −Ay −Bξ(t), η − y)−1,1 + ψ(η)− ψ(y) ≥ 0 ,

ξ(t) = ϕ(w, ξ0)(t) , w(t) = Cy(t) ,

y(0) = y0 ∈ D(ψ)
Y0
, ξ0 ∈ E(w(0)) , ∀ η ∈ Y1 , a.a. t ∈ (0, T ) .

(3.5)

A solution of (3.5) is defined as for (3.4) with P = I. It is clear that (3.4) for P = I goes
over into (3.5). In many cases however (3.4) has for certain P ∈ L(Y0, Y−1) ∩L(Y1, Y0) a
solution, but (3.5) doesn’t have a solution.

In the following we have to suppose some regularity of the solutions of (3.4):

(P5) For each T > 0, y(0) ∈ D(ψ)
Y0,P and ξ(0) ∈ E(CP y(0)) there exists exactly one

solution {y, ξ} of (3.4) satisfying

{y, ξ} ∈W 1,2(0, T ;Y1)×W 1,2(0, T ; R) . (3.6)

4. Frequency-domain conditions for exponential stability of stationary so-
lutions. Let us assume that all the assumptions of Section 2 and Section 3 are satisfied.
This means that we can consider the inequality (3.4) with respect to the non-standard
chain (2.22). Assume also that the set of stationary solutions (equilibria) of (3.4) is non-

empty. Recall that a pair {y∞, ξ∞} ∈ D(ψ)
Y0,P × R with ξ∞ ∈ E(CP y∞) is a stationary

solution of (3.4) if and only if this pair satisfies the (stationary) inequality

(−AP y∞ −BP ξ∞, η − y∞)−1,P ;1 + ψ(η)− ψ(y∞) ≥ 0 , ∀ η ∈ Y1 . (4.1)

Let us state now the main result of this paper.
In the second part of the statement we need the following supplementary assumptions.
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(P6) There exists a constant κ1 ∈ (0, 1/6) such that

|ψ(y)| ≤ κ1‖ y‖0,P , ∀ y ∈ D(ψ) .

(P7) For the constants ε > 0 and κ0 > 0 from (2.17) and (3.2), respectively, we have
‖CP ‖ < 2(ε− κ−1

0 ), where ‖CP ‖ is the operator norm of CP ∈ L(Y0,P ,R).

Theorem 4.1. Suppose that {y(·), ξ(·)} is an arbitrary solution of (3.4) on (0,∞) satis-
fying (P5). Then at every t > 0 the right derivative D+y(t) exists and there is a number
λ > 0, independent on the concrete solution, such that for every t ≥ s > 0

‖D+y(t)‖20,P ≤ e−2λ(t−s)‖D+y(s)‖0,P . (4.2)

Hence ‖ẏ‖0,P and ξ̇ are in L1(0,∞), ẏ ∈ L1(0,∞;Y0,P ) and there are stationary solutions
{y∞, ξ∞} of (3.4) such that

y(t) → y∞ in Y0,P and ξ(t) → ξ∞ (4.3)

as t → +∞. Assume additionally the properties (P6) and (P7). Then the convergence
(4.3) is exponentially, i.e. there exist constants ci > 0, i = 1, 2, 3, 4, independently on
{y0, ξ0}, such that

‖y(t)− y∞‖20,P ≤ e−2λ(t−s)
[
c1‖y(s)‖20,P + c2 ξ(s)2

]
(4.4)

and

(ξ(t)− ξ∞)2 ≤ e−2λ(t−s)
[
c3‖y(s)‖20,P + c4 ξ(s)2

]
(4.5)

for all t ≥ s > 0.

Proof. If we insert in (3.4) η = y(t+ h) with some h > 0 we get for a.e. t ≥ 0(
ẏ(t)−AP y(t)−BP ξ(t), y(t+ h)− y(t)

)
−1,P ;1

+ ψ(y(t+ h))− ψ(y(t)) ≥ 0 .
(4.6)

Now we put in (3.4) t = t+ h, η = y(t) and receive for a.e. t ≥ 0(
ẏ(t+ h)−AP y(t+ h)−BP ξ(t+ h), y(t)− y(t+ h))−1,P ;1

+ ψ(y(t))− ψ(y(t+ h)
)
≥ 0 .

(4.7)

The addition of (4.6) and (4.7) gives for a.e. t ≥ 0 the inequality(
ẏ(t+ h)− y(t)−AP

[
y(t+ h)− y(t)

]
−BP

[
ξ(t+ h)− ξ(t)

]
,

y(t+ h)− y(t)
)
−1,P ;1

≤ 0 .
(4.8)

It follows that for a.e. t ≥ 0

1
2

d
dt
‖y(t+ h)− y(t)‖20,P

−
(
AP

[
y(t+ h)− y(t)

]
+BP

[
ξ(t+ h)− ξ(t)

]
, [y(t+ h)− y(t)]

)
−1,P ;1

≤ 0 .
(4.9)
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If we divide (4.9) by h2 we get for a.e. t ≥ 0

1
2

d
dt

∥∥∥∥y(t+ h)− y(t)
h

∥∥∥∥2

0,P

−
(
AP

[
y(t+ h)− y(t)

h

]
+BP

[
ξ(t+ h)− ξ(t)

h

]
,
y(t+ h)− y(t)

h

)
−1,P ;1

≤ 0 .
(4.10)

Since ξ(t) = ϕ(CP y, ξ(0))(t) belongs to W 1,2(0, T ) for each T > 0, the solution y(t)
is right differentiable at any interval [s, t] ⊂ (0, T ] (see [1]). Thus, letting h ↓ 0 and
integrating (4.10) over [s, t], it follows that

‖D+y(t)‖20,P − ‖D+y(s)‖20,P ≤ 2
∫ t

s

(AP ẏ(τ) +BP ξ̇(τ), ẏ(τ))−1,P ;1 dτ. (4.11)

Since ẏ(t) ∈ Y1 and P ∈ L(Y0, Y1) the last inequality can be written as

‖D+y(t)‖20,P − ‖D+y(s)‖20,P ≤ 2
∫ t

s

(Aẏ(τ) +Bξ̇(τ), P ẏ(τ))0 dτ . (4.12)

From (2.17) and (3.2) it follows that for a.e. t ≥ 0

−
(
Aẏ(t) +Bξ̇(t), P ẏ(t)

)
0
≥ ε‖y(t)‖21 . (4.13)

Since P is bounded there exists a constant M > 0 such that
ε

M
(η, Pη)0 ≤ ε‖η‖21 , ∀ η ∈ Y1 . (4.14)

It follows from (4.12)–(4.14) with λ := ε
M that

‖D+y(t)‖20,P − ‖D+y(s)‖20,P + 2λ
∫ t

s

(ẏ(τ), P ẏ(t))0 ≤ 0 . (4.15)

Since ẏ(t) = D+y(t) a.e. on [s, t] we conclude from (4.15) that (4.2) is true.
From (4.15) it follows that (ẏ(t), P ẏ(t))1/2

0 ∈ L1(0,∞). From the convergence of the
integral

∫∞
0

(ẏ, P ẏ)1/2
0 dt we get the convergence in Y0,P of

y∞ = lim
t→∞

y(t) = y(0) +
∫ ∞

0

ẏ(t) dt . (4.16)

Now we conclude that w(t) = CP y(t) → w∞ for t → ∞ and ξ(t) = ϕ(w, ξ0)(t) → ξ∞
as t → ∞, where w∞, ξ∞ ∈ R. From the limit continuity of ϕ (property (P3)) we see

that ξ∞ ∈ E(w∞) and ϕ(w∞, ξ∞)(t) ≡ ξ∞. The continuity of ψ on D(ψ)
Y0,P implies that

ψ(y(t)) → ψ(y∞) as t→∞. This and (4.1) show that for each η ∈ Y1

(−AP y∞ −BP ξ∞, η − y∞)−1,P ;1 + ψ(η)− ψ(y∞) ≥ 0 . (4.17)

Thus {y∞, ξ∞} is a stationary solution of (3.4). Equation (4.16), inequality (4.2) and
the representation y(t) =

∫∞
0
ẏ(τ) dτ + y(0) give for each t > 0 the estimate

‖ y(t)− y∞‖20,P ≤
∫ ∞

t

‖ ẏ(τ)‖0,P dτ ≤ 1
2λ
e−2λ(t−s)‖D+y(s)‖20,P . (4.18)
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The next step is to estimate ‖D+y(s)‖20,P with the help of ‖ y(s) ‖20,P and ξ(s)2.
If we put in (3.4) t = 0 and η = −D+y(s) + y(s) we receive

(D+y(s)−AP y(s)−BP ξ(s), D+y(s))−1,P ;1

−ψ (−D+y(s) + y(s)) + ψ(y(s)) ≤ 0 .
(4.19)

From (4.19) and (P6) it follows that

‖D+y(s)‖20,P ≤ c̃5‖ y(s)‖20,P + c̃6ξ(s)2 +
(

1
2 + 3κ1

)
‖D+y(s)‖20,P (4.20)

with c̃5 = 1
2‖AP ‖2 + 1

2‖AP ‖ ‖BP ‖+3κ1 and c̃6 = 1
2

(
‖AP ‖ ‖BP ‖+ ‖BP ‖2

)
. Here ‖AP ‖

and ‖BP ‖ denote the operator norms of AP ∈ L(Y1, Y−1,P ) and BP ∈ L(R, Y−1,P ),
respectively.

Using again (P6) we get from (4.20) the inequality

‖D+y(s)‖20,P ≤ c5‖y(s)‖20,P + c6 ξ(s)2 (4.21)

with c5 =
c̃5

1
2 − 3κ1

and c6 =
c̃6

1
2 − 3κ1

. In oder to derive inequality (4.5) we put η = y∞

into (3.4) and receive for a.e. t ≥ 0(
ẏ(t)−AP y(t)−BP ξ(t), y∞ − y(t)

)
−1,P ;1

+ ψ(y∞)− ψ(y(t)) ≥ 0 . (4.22)

If we put η = y(t) into inequality (4.1) we obtain

(−AP y∞ −BP ξ∞, y(t)− y∞)−1,P ;1 + ψ(y(t))− ψ(y∞) ≥ 0 . (4.23)

If we add (4.22) and (4.23), we receive for a.e. t ≥ 0 the inequality(
− ẏ +AP [y(t)− y∞] +BP [ξ(t)− ξ∞] , y(t)− y∞)−1,P ;1 ≥ 0 . (4.24)

By assumption y(t)− y∞ ∈ Y1. Thus we can use (2.17) to get the inequality(
AP [y(t)− y∞] +BP [ξ(t)− ξ∞], y(t)− y∞)−1,P ;1

≤− ε
[
‖ y(t)− y∞‖21 + (ξ(t)− ξ∞)2

]
−
(
ξ(t)− ξ∞)(CP (y(t)− y∞)

− (ξ(t)− ξ∞)κ−1
0

)
.

(4.25)

It follows from (4.24) and (4.25) that

(ε− κ−1
0 )(ξ(t)− ξ∞)2 ≤ |ξ(t)− ξ∞| ‖CP ‖ ‖ y(t)− y∞‖0,P

+
1
2

∥∥D+y(t)
∥∥2

0,P
+

1
2
‖ y(t)− y∞‖20,P .

(4.26)

If we use in (4.26) inequalities (4.2), (4.21) and the property (P7) we get immediately
inequality (4.5) with

c3 =
1
2 c1(‖CP ‖+ 1) + 1

2c5

ε− κ−1
0 − 1

2‖CP ‖
and

c4 =
1
2 c2(‖CP ‖+ 1) + 1

2c6

ε− κ−1
0 − 1

2‖CP ‖
.
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