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A REMARK ON MORREY TYPE REGULARITY FOR NONLINEAR
ELLIPTIC SYSTEMS OF SECOND ORDER∗

JOSEF DANĚČEK† AND EUGEN VISZUS‡

Abstract. In this paper we discuss the problem of the regularity of the gradient of weak solutions
to nonlinear elliptic systems

−Dαaα
i (x, Du) = 0, i = 1, . . . , N,

where the coefficients aα
i (x, Du) have some special form and they may be discontinuous in general.

Key words. Nonlinear equations, regularity, Morrey-Campanato spaces

AMS subject classifications. 49N60, 35J60

1. Introduction. In this paper, we consider the problem of the regularity of the
gradient of weak solutions to the second order nonlinear strongly elliptic system

−Dαa
α
i (x,Du) = 0, i = 1, . . . , N, (1.1)

where aαi are Caratheodorian mappings from Ω×RnN into R, N > 1, Ω ⊂ Rn, n ≥ 2 is a
bounded open set. A function u ∈W 1,2

loc (Ω,RN ) is called a weak solution of (1.1) in Ω if∫
Ω

aαi (x,Du)Dαϕ
i(x) dx = 0, ∀ϕ ∈ C∞0 (Ω,RN ).

We use the summation convention over repeated indices.
As it is known, in case of a general system (1.1), only partial regularity can be

expected for n > 2 (see e.g. [3, 9, 11]).
For example if

|aαi (x, p)| ≤ L(1 + |p|),

(1 + |p|)−1aαi (x, p) are Hőlder continuous in x uniformly with respect to p and aαi are
differentiable functions in p,

|aα
i,pβj

(x, p)| ≤ L

and

aα
i,pβj

(x, p)ξiαξ
j
β ≥ ν|ξ|2
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then the first derivatives of weak solution of (1.1), are Hőlder continuous in an open set
Ω0 ⊂ Ω. In particular meas(Ω\Ω0) = 0.

In a special case if aαi = aαi (Du), aαi (0) = 0 and 2 ≤ n ≤ 4 then u is Hőlder
continuous in Ω.This result is the best possible, because for n > 4 u is only partially
Hőlder continuous.

It is well known (see [2]) that in linear case

−Dα(Aαβij (x)Dβu
j) = −Dαf

α
i , i = 1, . . . , N

the following holds: Suppose that

Aαβij (x)ξiαξ
j
β ≥ ν|ξ|2, a.e.x ∈ Ω, ∀ξ ∈ RnN ; ν > 0, (1.2)

Aαβij ∈ C0(Ω), fαi ∈ L2,λ(Ω), 0 < λ < n. Then Du ∈ L2,λ
loc (Ω,RnN ). Moreover if

coefficients Aαβij belong to some Hőlder classes then the gradient of u belongs (locally) to
the BMO-class.

The last mentioned result has become a motive for studying Morrey regularity of
gradient of weak solutions to nonlinear systems (1.1) where

aαi (x,Du) = Aαβij (x)Dβu
j + gαi (Du). (1.3)

2. Notation and definitions. We consider a bounded open set Ω ⊂ Rn, n ≥ 2,
u : Ω → RN , N ≥ 1, u(x) = (u1(x), . . . , uN (x)) is a vector-valued function, Du =
(D1u, . . . ,Dnu), Dα = ∂/∂xα. The symbol Ω0 ⊂⊂ Ω stands for Ω0 ⊂ Ω. For the sake of
simplicity we denote by | · | the norm in Rn as well as in RN and RnN . If x ∈ Rn and r
is a positive real number, we set Br(x) an open ball in Rn, centered at x with radius r,
Ω(x, r) = Ω ∩Br(x). By ux,r = –

∫
Ω(x,r)

u(y) dy we denote the mean value of the function
u ∈ L1(Ω,RN ) over the set Ω(x, r). Beside the usually used space C∞0 (Ω,RN ), the Hölder
spaces C0,α(Ω,RN ), C0,α(Ω,RN ) and the Sobolev spaces W k,p(Ω,RN ), W k,p

loc (Ω,RN ),
W k,p

0 (Ω,RN ) (see, e.g.[10]), we use the following Morrey spaces.

Definition 2.1. Let λ ∈ [0, n], q ∈ [1,∞). A function u ∈ Lq(Ω,RN ) is said to belong
to Morrey space Lq,λ(Ω,RN ) if

||u||qLq,λ(Ω,RN ) = sup
x∈Ω,r>0

1
rλ

∫
Ω(x,r)

|u(y)|q dy <∞.

Proposition 2.2. For a Lipschitz domain Ω ⊂ Rn the following hold:

(i) With the norm ‖u‖Lq,λ the space Lq,λ(Ω, RN ) is a Banach space.

(ii) If u ∈W 1,2
loc (Ω,RN ) and Du ∈ L2,λ

loc (Ω,RnN ), n− 2 < λ < n, then

u ∈ C0,(λ+2−n)/2(Ω,RN ).

For more details see [2, 9, 10, 11].
Some generalization of Campanato spaces Lq,λ (see [2]) are the classes Lψ introduced

by Spanne [12] and [13].

Definition 2.3. A function u ∈ L2(Ω,RN ) is said to belong to Lψ(Ω,RN ) if

[u]ψ,Ω = sup
x∈Ω,r∈(0,diam Ω]

1
ψ(r)

(
–
∫

Ω(x,r)

|u(y)− ux,r|2 dy
)1/2

<∞
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and by lψ(Ω,RN ) we denote the subspace of all u ∈ Lψ(Ω,RN ) such that

[u]ψ,Ω,r0 = sup
x∈Ω,r∈(0,r0]

1
ψ(r)

(
–
∫

Ω(x,r)

|u(y)− ux,r|2 dy
)1/2

= o(1) as r0 ↘ 0,

where

ψ(r) = (1 + | ln r|)−1.

Some basic properties of the above-mentioned spaces are formulated in the following
proposition (for the proofs see [1, 12, 13]).
Proposition 2.4. For a Lipschitz domain Ω ⊂ Rn we have the following:

(i) Lψ(Ω,RN ) is a Banach space with norm ‖u‖Lψ(Ω,RN ) = ‖u‖L2(Ω,RN ) + [u]ψ,Ω.

(ii) C0(Ω,RN ) \ Lψ(Ω,RN ) and
(L∞(Ω,RN ) ∩ lψ(Ω,RN )) \ C0(Ω,RN ) are not empty.

3. Results for above mentioned type of nonlinearity.

Theorem 3.1 (continuous coefficients , sublinear growth). Let u ∈ W 1,2
loc (Ω,RN ) be a

weak solution to the system (1.1) and the conditions (1.2), (1.3) be satisfied. Suppose
further that Aαβij ∈ C0(Ω) and gαi are smooth functions such that |gαi (p)| ≤ K|p|γ for all
p ∈ RnN , where γ < 1 , i, j = 1, . . . , N , α, β = 1, . . . , n. Then Du ∈ L2,λ

loc (Ω,RnN ) ,
(0 < λ < n).

This theorem is exactly proved in [4].

Theorem 3.2 (discontinuous coefficients , sublinear growth). Let u ∈ W 1,2
loc (Ω,RN ) be

a weak solution to the system (1.1) and the conditions (1.2), (1.3) be satisfied. Suppose
further thatAαβij ∈ L∞(Ω)∩Lψ(Ω) (in general discontinuous functions) and gαi are smooth
function such that |gαi (p)| ≤ K|p|γ , γ < 1 and gαi (p)piα ≥ ν1|p|1+γ , i, j = 1, . . . , N , α,
β = 1, . . . , n. Then Du ∈ L2,λ

loc (Ω,RnN ), (0 < λ < n).

For proof of Theorem 3.2 see [6].
An immediate consequence of Theorem 3.1 and Theorem 3.2 is Hőlder continuity

of weak solution u.
To do the growth conditions on gαi weaker we have to assume some structural condi-

tion:

Theorem 3.3 (discontinuous coefficients, linear growth). Let u ∈W 1,2
loc (Ω,RN ) be a weak

solution to the system (1.1) and the conditions (1.2), (1.3) be satisfied. Suppose further
thatAαβij ∈ L∞(Ω) ∩ Lψ(Ω) and gαi are smooth function such that |gαi (p)| ≤ K|p| , and
gαi (p)piα ≥ ν1|p|2,i, j = 1, . . . , N , α, β = 1, . . . , n and(

K

ν

)2

≤ 1
6(1 + 2n+1L)

(
c(n, q) + 1

2n−2

)
(3.22n+2L)(n−δ)/δ

with 0 < δ < n (constants L and c(n, q) are stated in lemmas which will follow ).Then
Du ∈ L2,λ

loc (Ω,RnN ) for λ < n− δ.

From Theorem 3.3 it follows that for 0 < δ < 2 weak solution of (1.1) u ∈
C0,θ(Ω,RN ) with θ < 1− δ/2.
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Theorem 3.3 is proved in [7] (submitted for publication) and in the following parts
we give a sketch of its proof.

The main tools which we need to prove this theorem are standard Korn’s device
of freezing the coefficients,higher integrability of gradient of solution and some delicate
estimates.

4. Preliminary results and sketch of proof. In this section we present the results
needed for the proof of Theorem 3.3. In BR(x) ⊂ Rn we consider a linear elliptic system

−Dα(Aαβij Dβu
j) = 0 (4.1)

with constant coefficients for which (1.2) holds.

Lemma 4.1 ([2, pp. 54–55]). Let u ∈W 1,2(BR(x),RN ) be a weak solution to the system
(4.1). Then, for each 0 < σ ≤ R,∫

Bσ

|Du(y)|2 dy ≤ L
( σ
R

)n ∫
BR

|Du(y)|2 dy

hold with a constant L independent of the homotethie.

In the following considerations we will use a result about higher integrability of the
gradient of a weak solution to the system (1.1).We set A = (Aαβij ), g = (gαi ).

Proposition 4.2 ([9, p. 138]). Suppose that the assumptions of Theorem 3.3 are ful-
filled and let u ∈W 1,2

loc (Ω,RN ) be a weak solutions of (1.1). Then there exists an exponent
r > 2 such that u ∈ W 1,r

loc (Ω,RN ). Moreover there exist constants c = c(ν, ν1, L, ‖A‖L∞)
and R̃ > 0 such that, for all balls BR(x) ⊂ Ω, R < R̃, the following inequality is satisfied(

–
∫
BR/2(x)

|Du|r dy
)1/r

≤ c
(

–
∫
BR(x)

|Du|2 dy
)1/2

In the following we will use the function

ln+ t =

{
0 for 0 ≤ t < 1,

ln t for t ≥ 1.

Lemma 4.3 ([5, p. 531]). Let u ∈W 1,2q
loc (Ω,RN ), q > 1. Then for every ball B2R(x) ⊂ Ω

and arbitrary constants b > 0 we have∫
BR(x)

|Du|2 ln+(b|Du|2) dy

≤ C
(

–
∫
B2R(x)

lnq/(q−1)
+ (4b|Du|2) dy

)1−1/q
∫
B2R(x)

|Du|2 dy

where C = C(n, q).

As a small modification of Lemma from [9, p. 86] we can obtain

Lemma 4.4. Let φ be a nonnegative and nondecreasing function on (0, R0] and there is
a constant τ , 0 < τ < 1 such that for every R < R0

φ(τR) ≤ ταφ(R) +BRβ
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where B ≥ 0, 0 < β < α. Then for every % < R ≤ R0 we have

φ(%) ≤ C

{( %
R

)β
φ(R) +B%β

}
where C is a constant depending on τ , α and β.

Let now Φ, Ψ be a pair of complementary Young functions

Φ(t) = t ln+ at for t ≥ 0, Ψ(t) =

{
t/a for 0 ≤ t < 1,

et−1 /a for t ≥ 1,
(4.2)

where a > 0 is a constant. Let us recall Young inequality

ts ≤ Φ(t) + Ψ(s), t, s ≥ 0. (4.3)

Proposition 4.5 (see [8]). Let v ∈ L2
loc(Ω,Rm), m ≥ 1, B(x, σ) ⊂ Ω, q ∈ (1,∞) and

b > 0 be arbitrary. Then∫
B(x,σ)

lnq+
(
b|v|2

)
dx ≤ q

(
q − 1

e

)q−1

b

∫
B(x,σ)

|v|2 dx.

As a consequence of (4.2), (4.3), Lemma 4.3 and Proposition 4.5 we have:

Proposition 4.6 (see [7]). Let u ∈ W 1,2q
loc (Ω,RN ), q ∈ (1,∞) and |gαi (p)| ≤ K|p| holds.

Then, for each ε > 0 and all BR(x) ⊂⊂ Ω,∫
BR(x)

|gαi (Du)|2 dy

≤ εK2c(n, q)
(
4aεK2 –

∫
B2R(x)

|Du(y)|2 dy
)(q−1)/q

∫
B2R(x)

|Du(y)|2 dy

+ κnΨ
(

1
ε

)
Rn.

Proof. [Sketch of proof of Theorem 3.3.] We set U(r) = U(x, r) = –
∫
Br(x)

‖Du(y)|2 dy,
φ(r) = φ(x, r) =

∫
Br(x)

|Du(y)|2 dy. Let BR/2(x0) ⊂ BR(x0) ⊂ Ω be an arbitrary ball

and let w ∈W 1,2
0 (BR/2(x0),RN ) be a solution of the following system∫

BR/2(x0)

(Aαβij )x0,R/2Dβw
jDαϕ

i dx

=
∫

BR/2(x0)

(
(Aαβij )x0,R/2 −Aαβij (x)

)
Dβu

jDαϕ
i dx−

∫
BR/2(x0)

gαi (Du)Dαϕ
i dx

(4.4)

for all ϕ ∈W 1,2
0 (BR/2(x0),RN ). An existence and unicity of such solution is known. Now

we can put ϕ = w in (4.4) and, using ellipticity and Hölder inequality, we get

ν2

∫
BR/2(x0)

|Dw|2 dx ≤ 2
∫

BR/2(x0)

|Ax0,R/2 −A(x)|2|Du|2 dx+ 2
∫

BR/2(x0)

|g(Du)|2 dx

= 2I + 2II.
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From Proposition 4.2 with r = 2q > 2, Hölder inequality (r′ = q/(q− 1)) and using the
properties of matrix A = (Aαβij ) we obtain

I ≤ c ψ1/r′(R)
∫

BR(x0)

|Du|2 dx

where c = c(n, q, [A]2,Ψ,Ω, ‖A‖L∞(Ω,Rn2N2 )).
We can estimate II by means of Proposition 4.6 and we have∫
BR/2(x0)

|Dw|2 dx ≤ c

ν2
ψ1/r′(R)

∫
BR(x0)

|Du|2 dx

+ ε
K2

ν2
c(n, q)

(
4aεK2U(2R)

)(q−1)/q
φ(2R) +

1
ν2
κnΨ

(
1
ε

)
Rn.

(4.5)

The function v = u− w ∈W 1,2(BR/2(x0),RN ) is the solution to the system∫
BR/2(x0)

(Aαβij )x0,R/2Dβv
jDαϕ

i dx = 0, ∀ϕ ∈W 1,2
0 (BR/2(x0),RN ).

From Lemma 4.1 we have, for 0 < σ ≤ R/2,∫
Bσ(x0)

|Dv|2 dx ≤ 2nL
( σ
R

)n ∫
BR/2(x0)

|Dv|2 dx. (4.6)

By means of (4.5) and (4.6) we obtain, for all 0 < σ ≤ R/2 and ε > 0, the following
estimate

φ(σ) ≤
[
2n+2L

( σ
R

)n
+ 2(1 + 2n+1L)

c

ν2
ψ1/r′(R)

]
φ(R)

+
2(1 + 2n+1L)K2c(n, q)

ν2
ε

(
4aεK2U(2R)

)(q−1)/q
φ(2R)

+
2(1 + 2n+1L)

ν2
κnΨ

(
1
ε

)
Rn

(4.7)

Now if we put a = 1/(4εK2U(2R)) in (4.7) and then put ε = 1, τ = 1/(3 · 22n+2L)1/δ

and σ = 2τR we immediately get

φ(2τR) ≤

[
1
3
τn−δ + 2(1 + 2n+1L)

c

ν2
ψ1−1/q(R) + 2(1 + 2n+1L)c(n, q)

(
K

ν

)2

+
2(1 + 2n+1L)

2n−2

(
K

ν

)2
]
φ(2R).

From the last estimate we see that there is R0 > 0 such that for every R < R0

φ(2τR) ≤ τn−δφ(2R)

holds. Now we can use Lemma 4.4.
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[7] J. Daněček and E. Viszus, On Morrey type regularity for nonlinear elliptic systems of second order,
Submitted.
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