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MAPS OF EXTREMALLY DISCONNECTED SPACES, 
THEORY OF TYPES, AND APPLICATIONS 

Z. FROLIK 

Praha 

Recall that an extremally disconnected space, shortly an ED-space, is a regular 
space such that the closure of each open set is open. Evidently every ED-space 
is zero dimmensional, and hence uniformizable. For brevity, if not otherwise stated, 
by a space we shall mean a separated uniformizable space (the assumption that the 
spaces are separated is irrelevant, but convenient). 

There is a duality between Boolean algebras and compact totally disconnected 
spaces^ and furthermore, a Boolean algebra B is complete if and only if the structure 
space of B (i.e. the Stone space of B) is an ED-space, and B is cr-complete if and only 
if the structure space of B is basically disconnected. 

In section 1 we recall basic facts about ED-spaces, that might be useful in 
reading of this survey. 

Our results on fixed points of mappings of ED-spaces in Sections 2 and 3 can 
be stated in terms of complete Boolean algebras, and in addition, the proofs translate 
from our language to the other one. We shall work with ED-spaces; the reader is 
invited to restate the results and proofs in terms of various concepts of Boolean 
Algebra Theory. The main result is that the set of all fixed points of a homeomorphism 
of a compact ED-space into itself is open. 

In Section 4 the results of Section 2 and 3 are applied to the theory of types 
of free ultrafilters on countable sets. 

The last two sections deal with applications to proofs of non homogeneity 
of closed sets in ED-spaces, and of [IP — P for spaces P that are not pseudocompact. 

1. Elementary Properties of ED-spaces 

In 1.1 — 1.4 we recall some well-known results on ED-spaces; if the reader 
finds it difficult to prove them, we invite him to consult the first chapters of [12]. 

1.1. Any Cech-Stone compactification of an ED-space is an ED-space, a dense 
subspace of an ED-space is an ED-space, and every compact ED-space is a Cech-
Stone compactification of each of its dense subspaces. 
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1.2. Every discrete space is an ED-space, and therefore Cech-Stone compactific-
ation of a discrete space is an ED-space. The Cech-Stone compactifications of 
discrete spaces are called free ED-spaces (they are free objects of the category 
of compact ED-spaces). We may think about free compact ED-spaces as ultra-
filter spaces, i.e. the structure spaces of Boolean algebras of all subsets of sets, 
see Section 4. 

1.3. Open subspaces of ED-spaces are ED-spaces, however a closed subspace 
of an ED-space need not be any ED-space, e.g., /?N — N is no ED-space where N 
is the discrete space of natural numbers. The product of two ED-spaces need not 
be any ED-spaces, e.g. /?N x /?N is not any ED-space. 

1.4. The statement that the closure of each open set is open is equivalent 
to the statement that if V and U are disjoint open sets, then cl U n cl V -= 0. 

1.5. A space is said to be basically disconnected if the closure of each co-zero 
set is open. The dual concept for Boolean algebras is a-complete. 

Remark. The results in 1.6-1.9 hold for spaces that admit an embedding 
as a closed subspace into a basically disconnected space. We shall make use of this 
remark in Sections 4 and 5. 

Two sets X and Yin a space are semi-separated if (X n cl Y) u (cl X n Y) = 0. 

1.6. Any two countable semi-separated sets X and Y in an ED-space P are 
functionally separated. 

Proof. There exist open sets U => X and V z> Y with U n V = 0. The charac­
teristic function of cl U is continuous and separates X and Y 

As an immediate consequence we get: 

1.7. Any discrete countable set in an ED-space is normally embedded (that 
means that any bounded continuous function on the set admits an extension on the 
whole space). 

In consequence, no non-trivial sequence in an ED-space is convergent, and 
hence every metrizable ED-space is discrete. (Of course, every discrete space is 
a metrizable ED-space.) If X is a set in a space, denote by X* the set cl X — X. 

1.8. Proposition. ([9], Lemma l). Assume that X and Y are discrete countable 
sets in an ED-space P. The set 

Z = (X n Y) u (X* n Y) u (X n Y*) 
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is discrete and normally embedded in P, and 

cl Z = clX n cl Y, Z* = X* n y* . 

Proof. Evidently the inclusions cz hold. Clearly clX n cl Y cz cl Z u Zl9 

X* n y* cz Z* u Zu where 

Zt = cl (X - cl y) n cl (y - cl X). 

The set 

Z0 = (x - c i y ) u ( y - ciX) 

is discrete, hence normally embedded, and therefore Zt = 0. 

As an immediate consequence we get the following result that will be needed 
in Section 4: 

1.9. Proposition. Let X and Y be two disjoint countable sets in an ED-space, 
and let x e cl X n cl Y. Then either x e cl (X* n Y) or x e cl (X n Y*). 

2. Decomposable Sets 

2.1. Let f be a mapping of a space P into itself. A setX cz P is called f-invariant 
or invariant wrtfzff[X] cz X. A set Y cz P is f-coinvariant if P — Y is f-invariant 
(or equivalently, if f_1[Y] <= Y). A set is bi-invariant if it is simultaneously 
invariant and coinvariant. 

2.1. Definition. Let f be a mapping of a space P into itself, and let k _• 2 
be an integer. Call a set B cz P, k-decomposable wrtf ifB is the union of a disjoint 
family [Bt | i = 1, ..., k} of closed-open sets Bv such that f\B\ cz B, and Bi n 
nf[Bt] = 0for all i. 

2.2. Lemma. Let f be a continuous mapping of an ED-space E into itself, 
and let k ^ 2 be an integer. There exists a largest k-decomposable set wrt f. the 
largest k-decomposable set is coinvariant, hence bi-invariant. 

This lemma is proved by considering the collection m of all k-decomposable 
sets, and showing, step by step, that: 

a) The collection m is closed under disjoint unions (Boolean), and hence there 
exists a Z in m such that if M em, and if M n Z = 0 then M = 0. 

b) Each element Z of m is contained in the smallest coinvariant set Z0 ZD Z, 
and Z0 belongs to m. 

c) Take Z as in a; then Z0 in b is the largest k-decomposable set. 
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2.3. Let / be a mapping of a set P into itself. If we endow P with the discrete 
topology then / becomes a continuous mapping of an ED-space into itself, and 
Lemma 2.2 applies. It is easy to verify that the complement Y of the largest 3-de-
composable set is the smallest coinvariant set containing the set F of all fixed points, 
in particular, P is 3-decomposable if F = 0. This is the essential part of Lemma 
on three sets, see Proposition 1 in [14], for a historical comment see [15], Remark 1.14. 

The most convenient form of the Lemma for applications in the theory of types 
reads as follows: 

Lemma on three sets. Let f be a mapping of a set P into itself and let F be the 
set of all fixed points off. Then P — F is a disjoint union of three sets Ml9 M2 and 
M3 such that f'[M,] n Mt- = 0. 

There is a generalization of 2.2 in the direction of Lemma on three sets. It should 
be remarked that this proposition will not be needed. 

Proposition. Let f be a continuous mapping of an ED-space E into iiselj\ and 
let U be an open subset of E. There exists the largest U-relative k-decomposable 
set wrtf 

By a [/-relative k-decomposable set we mean a closed-open set B in U such that B 
is a disjoint union of a family [Bt | i = 1, ..., k} of closed-open sets in U such that 
f[J3{] c (£ — U) u (B — I?,) for each i. The proof is the same. 

In the case of a mapping of a discrete space P into itself we deduce from the 
Proposition that P — F, F being the set of all fixed points, is (P — F)-relative k-
decomposable, which is precisely Lemma on three sets. 

2.4. Existence Lemma. If K is a compact ED-space and f is a homeomorphism 
of K into itself such that fx # x for some x in K, then there exists a non-void 
3-decomposable set. 

Proof. Put Kx = f [ K ] , and choose a non-void closed-open set C3 such that 
/ [ C 3 ] n C3 = 0. By induction choose closed open sets Zn. n = 1, 2, ..., such that 
Z! n C3 = 0, Z! n Ki = / [ C 3 ] , and 

Zn+1 n (C3 u Zi u ... u Zn) = 0 , 

Z« + i-Ki — f[zn\ ~~ c3. 

Let Ci be the closure of the union of all Zn with n odd, and C2 the closure of the 
union of all Zn with n even. It is easy to see that {Cf | i = 1, 2, 3} is a 3-decomposition 
ofl/fC.}. 

Remark. Existence Lemma holds for basically disconnected compact spaces. 
On the other hand, 1.2 does not hold for basically disconnected compact space, 
see [10], Example. 
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3. Fixed Points 

Applying Lemma 1.4 to the complement of the largest 3-decomposable set 
(Lemma 1.2) we get the following fundamental result. 

3.1. Theorem. Let f be a homeomorphism of a compact ED-space K into itself. 
There exists a decomposition [Bt | i = 0, 1, 2, 3} of K with Bt closed-open such thatf 
is an identity on B0, and f\Bj\ n Bj = ®forj = 1, 2, 3. In particular, the set of all 
fixed points off is closed-open. 

Remark. The set of all p-periodic points of / in Theorem is closed-open because 
Theorem applies to the p-fold composite of/ by itself. 

It follows from Theorem 3.1. that a homeomorphism of a compact ED-space 
into a nowhere dense set of itself has no fixed points. As a consequence we get the 
following useful result for proving nonhomogeneity of spaces (see [8], [9], [10]). 

3.2. Proposition. Assume that E is a closed nowhere dense subspace of an 
extremally disconnected compact space K, and assume that E contains a copy of K. 
There exist x, y e E such that hx = y for no homeomorphism h of E into itself, 
in particular E is not homogeneous. 

Proof. Choose any homeomorphism of K into E, pick any y in E, and put 
x = gy. 

3.3. The set F of all fixed points of a continuous mapping of K into itself is always 
closed, however, it need not be open, even if K is a compact ED-space. E.g., consider 
a constant mapping. For more complicated examples see [11], Examples 1, 2 and 3. 

In our particular case we can prove an analogon of 3.1. Let K be a Cech-Stone 
compactification of a discrete space M; we write K = (IM. If/ is a continuous map­
ping of K into itself such that / [ M ] c: M, then F is open because F is the closure 
of F n M. This follows from Lemma on three sets (see 1.3). 

On the other hand it is not difficult to prove that the fixed points are non-
expanding. 

3.4. Theorem. Let x be a fixed point of a continuous mapping f of a space E 
into itself. It E is an ED-space, then each neighborhood of x contains an invariant 
closed-open neighborhood. If E is a basically disconnected space then each neigh­
borhood of x contains an invariant closed neighborhood. 

3.5. Example in [10] shows that in 2.4, 2.3, 2.2, 2.1 and 1.2 the assumption that 
the space is an ED-space may not be relaxed to basically disconnected (dual of 
r/-complete) or to the dual of m-complete. 
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4. Topological Theory of Types of Ultrafilters 

Let PM be a Cech-Stone compactification of a discrete space M (we assume that 
M c= /JM, i.e., that M is identically embedded in /?M). If x e /?M — M = M* then 
the intersections of the neighborhoods of x with M form a free ultrafilter on M, 
and each free ultrafilter on M is of that form. We shall assume that no free ultra-
filter on M is an element of M, and we may and shall think of the points of M* 
as free ultrafilters on M. 

Remark. Let M be a discrete space; then the set exp M of all subsets of M 
is the Boolean algebra of all closed-open sets in M, the structure space K of exp M 
consists of all ultrafilters in M, and if we assign to each me M the ultrafilter on M 
containing the singleton (x) we get a compactification / : M -> K of M such that 
the points are just the ultrafilters. Now we replace fm by m, and get the Cech-Stone 
compactification described above. Of course we may replace fm by m if m ^ X*. 

4.1. We denote by N the discrete space of natural numbers, and let identity: 
N -> j?N be the Cech-Stone compactification such that the elements of N* = /?N — N 
are just the free ultrafilters as described above. It is well-known that (consult any 
book on topology, e.g. [12]): 

(a) The cardinal of /?N is exp exp K0. 

(b) If X is dense in N*, then the cardinal of X ist at least exp K0. 

4.2. For brevity, if not otherwise stated, then by an ultrafilter we mean a free 
ultrafilter on a countable set. 

4.2.1. Definition of types. Let F be an ultrafilter on Mh i = 1,2. We write 
F! ~ F2, and say that Fx and F2 are equivalent if there exists a bijective mapping f 
ofMx onto M2 such that F e Fx if and only / / / [ i 7 ] e F2. Clearly ~ is an equivalence. 
Let T be a fixed single-valued relation which assigns to each ultrafilter F an 
element TF, called the type of F, such that rFt = TF2 if and only if Ft ~ F2. 
We also say that F is of type TF. The set of all types is denoted by T. 

4.2.2. The cardinal of T is exp exp K0. 

Proof. The restriction of % to N* = /?N — N is onto T. The cardinal of N* 
is exp exp K0, and each ultrafilter on N is equivalent to at most exp K0 ultrafilters 
because there is exp K0 permutations of N. 

4.2.3. Definition. Let F be an ultrafilter on M, and let {ZFm \ m e M} be a fa­
mily of ultrafilters. The collection of all sets 

Z{Fm\meF}, 
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with FeJ% FmE^m9 is an ultrafilter which is called the sum of {2?m} wrt J*, 
and designated by 

YX&m | m e M} . 

If {(§m \ m e M} is a family of ultrafilters such that #"m ~ ^mfor each m, then 

which enables us to define, in the natural way, the sum of a family {tm} of types 
of ultrafilters wrt an ultrafilter 3F\ notation: ]£{tTO}. 

Remarks . The sum of ultrafilters comes out naturally when considering 
iterated limits with filters. See [15], Introduction. 

4.2.4. Let P be a space, and let x e P . If X cz P is a normally embedded 
discrete countable set such that X E X * , then the intersections of X with the neigh­
borhoods of x form an ultrafilter on X that is called the ultrafilter of x wrt X in P, 
and that is designated by $F(x,X,P). The type of 2F(x,X,P) is called the type 
of x wrt X in P, and is designated by t(x, X, P). The set of all t(x, X, P) with x and P 
fixed is denoted by T(x, P). 

Consider P = /?N. Let G = YX^m \ meM}. Choose a discrete family 

{xm j m e M} of points in j8N such that 

t(xm, N, /?N) = T&m , 

and choose a point x in /?N in the closure of the set X of all xm such that 

t(x, X, j3N = %& . 

It is easy to see that 

t(x, N) = T^ . 

This is the topological description of the sum of ultrafilters. Observe that if 
y e /?N and if t(y, N) = T^, then there exist xm e fSN such that the above representa­
tion of YX^m} holds with x = y. 

4.2.5. If<S = X {&m} then %<§ # T#*. 

Proof. Let x, xm have the meaning in 4.2.4. If %<$ = x$F then there would exist 
a bijective mapping / of N onto X such that f\jF(x, N)~] = 2F(x, X). Then / extends 
to a homeomorphism of />N into /?N; clearly fx = x. On the other hand, /[/JN] 
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is nowhere dense, and therefore, by 3.1, there is no fixed point. This contradiction 
proves 4.2.5. 

4.2.6. We write t < tl9 and say that tx is produced by t, if 

for some #"m, <$ with x<S = tl9 and #" with r#" = l. In this situation we write #" < <S. 
Clearly < is an order on T. By 4.2.5 we have. 

Theorem (Theorem 1 in [6].) t < t1 for no t in T. 

Thus < is irreflexive. This is the first important property of < . The other one 
says: 

4.2.7. Theorem (Theorem C in [7]). Every type is produced by at most exp X0 

types, stated formally, card <~l [t] _ exp K0for each t in T. 

We are able to prove the following important result. 

4.2.8. Theorem ([9], Theorems 2, 3). Let P be a closed subspace of an ED-space 
(or more generally, let P admit an embedding as a closed subspace into a basically 
disconnected space). For each x in P the set T(x) is linearly ordered, and ift(x, X) = 
= t(x, Y), then t(x, X) = t(x, X n Y). 

Proof. All stastements follow from 1.8, see also 1.9. 

Remark. The second statement may be formulated as follows: let m(x) be the 
set of germs of countable discrete sets X at x with x e X*, and let <K> be the germ 
which contains X. Define gx < g2 if Xx c X2 for some Xt with gx = <X<->. The 
natural mapping of m(x) onto T(x) is one-to-one order-preserving. 

4.2.9. Let .#"£ be an ultrafilter on Mt, i = 1, 2. We write 3~± -» #"2 if there 
exists a mapping f of Mt into M2 such that fx\F\ e Ft for each F in F2. This 
relation induces an order -> on T If tx > t2 or tt = t2 then t1 -> t2. 

Clealy ^x -> 3F2 if and only if there exists a continuous g : PM\ -> pM2 such 
that g^r

1 = 3~2, and g[Mx] c M2. 

4.2.10. Theorem ([15], Proposition 15). If t -> tt-+ t, then t = tx. 

Proof. Let #" and Ssr
1 be ultrafilters on N,fandfi be mappings corresponding 

to J^ -> SFi and 3F± -> #"2, respectively. Thenf = f2 oft is an identity on an element 
F of 2F by Lemma on three sets, and so on. Compare 4.2.10 with Theorem 4.2.6. 
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4.3. Multiplication of types. The product @. 3F of two ultrafilters is defined 
to be the sum YJi^m \ m e M] where M = \J<£, and 3Fm = 3F for m e M. This 

induces multiplication of types. 

4.3.1. Theorem, t < t. tx ^ tx for every t, tx e T. 

The first relation is a particular case of 4.2.6. The proof of the second one goes 
as follows. Assume that t. tt = tx. Then we can find a discrete set X in N*, and 
y e l * , and a continuous mappingfof jSN into j9N such thatf[N] <= N, andf/t =£ n 
for n in N, and: 

(a) t(x, N) = t(y, N) = t, t(y, X) = tt. 

(b)f[X] =(v). 

Then fy = y by (b), and this contradicts to Lemma on three sets. 

4.3.2. M. Katetov has proved that t. tt # tt . t for some t and tu see [15], 
Theorem 4.7. 

4.3.3. Let teT, and let A be the set of all x in /?N Of type t. By 4.3.1 each 
countable discrete set in A is closed. 

I do not know for which t the space A is pseudocompact. It is not if t is a p-type 
as described in 4.4.1. 

For any t the space N u A is pseudocompact (because each subset of N has 
a cluster point in A), and in addition, every power (N u ^4)̂  is pseudocompact. 
This fact was used in [5] to exhibit an example of a space X such that each finite 
product Xn is pseudocompact, but X*° is not, and given a positive integer k, a space 
Yk such that Yk is pseudocompact but Yk

 + 1 is not. 

4.4. Examples 

4.4.1. Proposition, The following properties of an ultrafilter 2F on N are 
equivalent: 

(a) 3F is a P-point of N*; 

(b) For each sequence {Fn} in $F there exists an F in 2F such that F — Fn is finite 
for each n. 

(c) Iff is any mappoing of N into the closed interval of reals then f[F] has 
at most one cluster point for some F in 2F (and hence, [fn | n e F} converges). 

(d) If Nn is a partition of N, then Nn e #" for some n or F n N„ is finite for 
some F in 3F and each n. 
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An ultrafilter with properties (a) —(d) is called a P-ultrafilter (or <5-stable or 
1-simple by G. Choquet [4]). This terminology carries over to types. The proof 
of equivalence of (a) — (d) is quite routine. On the other hand, all existence proofs 
of P-types depend on the Continuum Hypothesis (abbreviated: CH). W. Rudin 
proved existence of P-points in N* (hence, P-types) in [17]; his method was refined 
by G. Choquet in [3] and [4]. The constructions are based on the following simple 
lemma: 

If JMs a countable filter base, then there exists a set G such that G — F is finite 
for each F in $F. 

4.4.2. Under CH there exist exp exp X0 P-types. In particular, <T, <> is not 
linearly ordered. 

Proof. Rudin [11] or Choquet [4]. 

4.4.3. Every P-type is produced by no type, in particular, P-types are minimal 
elements of <T, <>. It is not known whether there exists a minimal element which 
is not any P-type. 

4.4.4. An ultrafilter #" on M is said to be rare if for each partition {Mn} of M 
with Mn finite, there exists an F in 3F with F n Mn at most one-point for each n. 

An ultrafilter 3F on N is said to be rapid if for each increasing sequence {kn} 
of integers there exists an element F of ^ such that the n-th element of F is greater 
than kn. 

It is easy to verify that every rare ultrafilter is rapid. 

4.4.5. Theorem. The following properties of an ultrafilter £F on M are equi­
valent: 

(a) 3F is a rare P-ultrafilter. 

(b) For each partition {Mn} of M, either Mn e #" for some n9 or F n Mn is 
at most one-point for some F in 3F and each n. 

(c) 3F is minimal in <T, ->>. 

An #" with properties (a) — (e) is called a -* — minimal (or absolute by G. Cho­
quet). The proof is easy. 

4.4.6. G. Choquet [4] has shown, of course under CH, that the concepts of 
P-ultrafilter and rare ultrafilter are "completely" independent. For our purposes, 
it is important that there exists a P-type which is not any -» — minimal type. 
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5. Non-homogeneity of Compact ED-spaces 

We say that a space P is homogeneous if for each x and y in P there exists 
a homeomorphism h of P onto P with hx = y. The following is evident: 

5.1. Proposition. If a space P is homogeneous then T(x, P) = T(y9 P) for each x 
and y in P. If a space P is homogeneous and if P contains a copy of /?N — N, 
then T(x, P) = T for each x in P. 

5.2. Theorem. Assume that K is an infinite compact space that is an ED-space 
(or more generally, that admits an embedding into a basically disconnected space). 
If K is homogeneous then 

(a) T(x, K) = T for each x in K, 

(b) T is linearly ordered, 

(c) There is no cardinal between exp X0 and exp exp K0. 

Proof. Assertion (a) follows from 4.2.8. Assertion (b) follows from (a) by 5.1. 
Statement (c) follows from (a), 4.2.1, and from the following observation: 

Assume that t = t(x, X). Consider the closure L of X in K; L is a copy of /?N, 
and t* e T, t' < t if and only if t = t(x, Y) for some 7 c l * . Thus the set 

S{t' | r = or t' < t} = T(x, L) . 

The cardinal of T(x, L) is at most exp X0 by 4.2. 

5.3. Theorem ([9], Theorem 1). If there is no cardinal between tt0 and exp K0, 
or if there is a cardinal between exp K0 and exp exp K0, then there exists no infinite 
compact space that admits an embedding into an ED-space (or more generally, 
basically disconnected space). 

5.4. I cannot prove that the assumptions in Theorem 5.3 on the set theory 
used may be omitted. However for many spaces "absolute'5 non-homogeneity follows 
from preceding results. E.g., Proposition 3.2. gives absolute nonhomogeneity of 
closed subspace of /?N — N, some of /?M — M in general, see [9, closing Remarks]. 

6. Non-homogeneity of /?P — P 

6.1. Theorem ([8], Theorem). If P is not pseudocompact then JSP — P is not 
homogeneous (without any assumption on the set theory). 

Under the additional assumption that P is locally compact and CH holds 
W. Rudin formulated and proved Theorem 6.1 in [17]. T. Isiwata proved Rudin's 
Theorem without assuming P locally compact. 
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The proof of 6.1 is based on the following Lemma and the theory of types. 

6.2. Lemma (Lemma in [9]). Let X be a completely normally embedded count-

able subset of a space P. Let Y a @P be a countable set which is semi-separated 

to X. Then X and Y are functionally separated in fiP {and hence: cl X n cl Y = 0). 

6.3. Proof of 6.1. Since P is not pseudocompact there exists a completely 

normally embedded discrete countable infinite set X in P. Take any point x in 

cl X - X. It follows from 6.2 that T(x, j3P - P) =# T. Since j8P - P contains a 

copy of /?N — N, namely clX — X, pP — P is not homogeneous by 5.1. 
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