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A HOMOGENEOUS HAUSDORFF 
Eo-SPACE WHICH IS NOT Ex 

S. P. FRANKLIN 

Pittsburgh — Kanpur 

In [3] C. E. Aull asks if there is a homogeneous Hausdorff space in which each 
point is a Gd (an £0-space) but is not the intersection of countably many closed 
neighborhoods (an Et space). In this note we shall construct such a space. An ana
logous construction will yield for each pair of infinite cardinals m = n, a homo
geneous Hausdorff space in which each point is the intersection of m open sets but 
isn't the intersection of n closed neighborhoods. 

We shall first construct a space which satisfies the desired condition at one point 
(such spaces have been previously given by Novak [4, p . 89] and Aull [2, Example 1]; 
the basic idea behind all three spaces is the same) and then use copies of this space 
to construct a homogeneous space with the desired properties. (The basic idea here 
dates back to Urysohn [6, Kapitel III]; see also Shimrat [5] and the construction 
of Sa in [1].) 

For each countable ordinal a choose a sequence of points {x*} (all of these points 
are distinct) and let X0 = (a>t + 1) u {xn | n EN and a < cOJ be topologized as 
follows: each xn is an isolated point; a basic neighborhood of a < co1 is of the form 
{a} u {xn | n = k}\ a basic neighborhood of co1 is of the form 

V(P,k) = {x«n\n = k, a = p}u{coi}. 

Clearly X0 is a Hausdorff (in fact a Urysohn) space. It is not regular since the 
set coi cannot be separated from the point co1. Each point is a G5 since {coj = 

oo 

= (1 V(0, /c), but co1 is not the intersection of any countable collection of it's closed 
fc=i 

neighborhoods. 
Let us now modify X0 by adding a sequence of points converging to coi as 

follows: Let X = X0 u {xn} (where {xn} n X0 = 0) with each V(/?, k) u {xn | n ^ 

= m} a basic neighborhood of a>l in X and each xn isolated. Clearly X has all the 
properties asserted for X0 in the last paragraph. 

We shall now construct a sequence {Hn} of spaces, each a subspace of the suc
ceeding ones, whose union (i.e. inductive limit) will be the desired space. Let Ht = X. 
To construct H2 from Hl9 attach to each point x* (xn) of H1 a copy Xn (X^ of X by 
identifying x*n with (a^)* eXn, and similarly for xm and to each a e Ht (a < cox) a copy 
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Xő of X0 by identifying a with ( c o ^ e l ő . The resulting space Я 2 should be given 
the quotient topology. In general, to construct Hn from Я„„1 ? attach to each isolated 
point x of Hn^x a copy Xx of X by identifying x with (c0i)* e l , and to each non-
isolated point y єHn~i with a countable basis of neighborhoods a copy Jř0 of X0 

identifying y and (cOi)37 єX 0 . Again the resulting Hn should have the quotient topo-
logy. Let Я be the inductive limit of the Яn. 

It is easy to verify that Я is a Urysohn space and that the point of Я arísing 
from C0! є Я x is a Gô that isn't the intersection of countably many closed neigh-
borhoods. It remains only to show that Я is homogeneous. To this end, we partially 
order Я as follows: each x (or ý) in Hn-.t is greater than (>) each point of Xx (or Xy

0) 
and y is greater than each point of its basic neighborhoods in Hn^г; the desired 
relation is the transitive closure of this one. Nowfor any xєЯ, L(x) = {yєЯ | y ^ x} 
is a closed subspace of Я that is homeomorphic to Я. If Я \ L(x) Ф 0, it is 
also homeomorphic to Я. Hence for anу x Ф co^є Я, there is a homeomorphism 
hx : H ~+ H interchanging x and co^ Hence Я is homogeneous. 

The construction is easilу modified to take care of cardinals m = n, producing 
a homogeneous Urуsohn space in which each point is the intersection of m open 
sets but not the intersection of anу n of its closed neighborhoods. 
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