Stanley P. Franklin A homogeneous Hausdorff E_0 -space which is not E_1

In: Stanley P. Franklin and Zdeněk Frolík and Václav Koutník (eds.): General Topology and Its Relations to Modern Analysis and Algebra, Proceedings of the Kanpur topological conference, 1968. Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1971. pp. 125--126.

Persistent URL: http://dml.cz/dmlcz/700566

Terms of use:

© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

A HOMOGENEOUS HAUSDORFF E_0 -SPACE WHICH IS NOT E_1

S. P. FRANKLIN

Pittsburgh - Kanpur

In [3] C. E. Aull asks if there is a homogeneous Hausdorff space in which each point is a G_{δ} (an E_0 -space) but is not the intersection of countably many closed neighborhoods (an E_1 space). In this note we shall construct such a space. An analogous construction will yield for each pair of infinite cardinals $\mathfrak{m} \leq \mathfrak{n}$, a homogeneous Hausdorff space in which each point is the intersection of \mathfrak{m} open sets but isn't the intersection of \mathfrak{n} closed neighborhoods.

We shall first construct a space which satisfies the desired condition at one point (such spaces have been previously given by Novák [4, p. 89] and Aull [2, Example 1]; the basic idea behind all three spaces is the same) and then use copies of this space to construct a homogeneous space with the desired properties. (The basic idea here dates back to Urysohn [6, Kapitel III]; see also Shimrat [5] and the construction of S_{ω} in [1].)

For each countable ordinal α choose a sequence of points $\{x_n^{\alpha}\}$ (all of these points are distinct) and let $X_0 = (\omega_1 + 1) \cup \{x_n^{\alpha} \mid n \in N \text{ and } \alpha < \omega_1\}$ be topologized as follows: each x_n^{α} is an isolated point; a basic neighborhood of $\alpha < \omega_1$ is of the form $\{\alpha\} \cup \{x_n^{\alpha} \mid n \geq k\}$; a basic neighborhood of ω_1 is of the form

$$V(\beta, k) = \{x_n^{\alpha} \mid n \ge k, \ \alpha \ge \beta\} \cup \{\omega_1\}.$$

Clearly X_0 is a Hausdorff (in fact a Urysohn) space. It is not regular since the set ω_1 cannot be separated from the point ω_1 . Each point is a G_{δ} since $\{\omega_1\} = \bigcap_{k=1}^{\infty} V(0, k)$, but ω_1 is not the intersection of any countable collection of it's closed neighborhoods.

Let us now modify X_0 by adding a sequence of points converging to ω_1 as follows: Let $X = X_0 \cup \{x_n\}$ (where $\{x_n\} \cap X_0 = \emptyset$) with each $V(\beta, k) \cup \{x_n \mid n \ge \\ \ge m\}$ a basic neighborhood of ω_1 in X and each x_n isolated. Clearly X has all the properties asserted for X_0 in the last paragraph.

We shall now construct a sequence $\{H_n\}$ of spaces, each a subspace of the succeeding ones, whose union (i.e. inductive limit) will be the desired space. Let $H_1 = X$. To construct H_2 from H_1 , attach to each point $x_n^{\alpha}(x_n)$ of H_1 a copy $X_n^{\alpha}(X_n)$ of X by identifying x_n^{α} with $(\omega_1)_n^{\alpha} \in X_n^{\alpha}$, and similarly for x_n , and to each $\alpha \in H_1$ ($\alpha < \omega_1$) a copy

 X_0^{α} of X_0 by identifying α with $(\omega_1)^{\alpha} \in X_0^{\alpha}$. The resulting space H_2 should be given the quotient topology. In general, to construct H_n from H_{n-1} , attach to each isolated point x of H_{n-1} a copy X^x of X by identifying x with $(\omega_1)^x \in X$, and to each nonisolated point $y \in H_{n-1}$ with a countable basis of neighborhoods a copy X_0^y of X_0 identifying y and $(\omega_1)^y \in X_0^y$. Again the resulting H_n should have the quotient topology. Let H be the inductive limit of the H_n .

It is easy to verify that H is a Urysohn space and that the point of H arising from $\omega_1 \in H_1$ is a G_{δ} that isn't the intersection of countably many closed neighborhoods. It remains only to show that H is homogeneous. To this end, we partially order H as follows: each x (or y) in H_{n-1} is greater than (>) each point of X^x (or X_0^y) and y is greater than each point of its basic neighborhoods in H_{n-1} ; the desired relation is the transitive closure of this one. Now for any $x \in H$, $L(x) = \{y \in H \mid y \leq x\}$ is a closed subspace of H that is homeomorphic to H. If $H \setminus L(x) \neq \emptyset$, it is also homeomorphic to H. Hence for any $x \neq \omega_1 \in H$, there is a homeomorphism $h_x : H \to H$ interchanging x and ω_1 . Hence H is homogeneous.

The construction is easily modified to take care of cardinals $m \leq n$, producing a homogeneous Urysohn space in which each point is the intersection of m open sets but not the intersection of any n of its closed neighborhoods.

References

- A. V. Arhangelskii and S. P. Franklin: Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320.
- [2] C. E. Aull: A certain class of topological spaces, Prace Mat. 11 (1967), 49-53.
- [3] C. E. Aull: Some base axioms for topology involving enumerability, Proceeding of the Kanpur Conference on Topology, 55-61.
- [4] J. Novák: On convergence spaces and their sequential envelopes, Czech. Math. J. 15 (90) (1965), 74-100.
- [5] M. Shimrat: Embedding in homogeneous spaces, Quart. J. Math. Oxford Ser. (2) 5 (1954), 304-311.
- [6] P. Urysohn: Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. 94 (1925), 262-295.

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR, INDIA, AND CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, U.S.A.