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REMARKS ON FREE OBJECTS IN CATEGORIES 

W. SHUKLA 

Kanpur 

Introduction. A free Abelian group may be defined as a coproduct of copies 
of the infinite cyclic group Z or else as an Abelian group satisfying a certain universal 
property. The latter approach has found an expression in the language of adjoint 
functors and free-object functors as adjoints to the "underlying set" functors are 
now well known. On the other hand, free objects are frequently seen to be the co-
products of a certain fixed object, e.g., free topological spaces (discrete spaces) 
are disjoint topological sums of the single-point space. The purpose of this note 
is to emphasize that this is no accident. We give a "coproduct-definition" of free 
objects and observe that this agrees with the usual "adjoint-definition" in a fairly 
wide class of categories. We also establish some well known results about free and 
projective objects. We must point out that a "coproduct-definition" has been given 
by Semadeni [SI]. As far as the author knows, however, no attempt was made 
to connect it to the "adjoint-definition". 

1. Definitions. Let K be a category and let Ens be the category of sets and functions. 
A covariant functor G: K -» Ens is called a grounding of K (see Isbell [II]). A faith­
fully grounded category is called a concrete category. A universal element for 
a grounding G is a pair (w, JR) consisting of an object JR of K and element u e G(R) 
with the following property: To any object K of K and any elements 5 e G(K) there 
is exactly one morphism f:R-*K with G(f) u = 5. If K(JR,K) stands for the set 
of all morphisms with R as source and K as target then there is a bijection K(R, K) ~ 
cs G(K); it is known that this is a natural equivalence. If K is concrete and the faithful 
grounding G: K -> Ens has an adjoint F : Ens -> K we say that F is a free-object 
functor. Explicit reference to G is avoided; we say free objects rather than G-free 
objects and define F(X) to be free on the 
set X. To say that F is adjoint to G, of | ^ GF(X) F(X) 
course, means that to any set X there is an 
object F(X) in K and a function £: X -» 
-> G F(X) such that given any function 

/ : X —> G(A) for an object A of K there is 
a unique morphism h : F(X) -• A making 
the following diagram commutative 
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Henceforward K will stand for a concrete category, G: Ens -* K its faithful grounding 
and F will denote the free-object functor. The single-point set will be denoted by a star. 
For a set X, \X\ denotes its cardinality. The covariant horn functor, for a fixed 
object A, will be denoted by hA. 

2. Proposition. G : K 
element. 

Ens has an adjoint F : Ens -> K only if it has a universal 

Proof. Assume that G has an adjoint F and let us consider the object F(*). 
When we recall that an element in any set is simply a function with * as its domain, 
fig. 1 (on putting £(*) = u) reads: To any object A and to any point fe G(A) there 
is a unique morphism h : F(*) -• A such that G(h) u = f. In other words, (u, F(*)) 
is a universal element for G. 

3. Definition. If the universal element (u, R) for the faithful grounding G : K -> Ens 
exists, R is called the universal free object and u e G(R) is called the universal free 
element. These terms will be abbreviated to ufo and ufel respectively. 

A free object in K is defined to be a coproduct of copies of R. 

4. Proposition. Assume that K has coproducts and G has a universal element 
(u, R) Then the free-object functor F : Ens -> K exists. Conversely, if the free 
object functor exists then G has a universal element (u, R) and F(X) is precisely 
a coproduct of \X\ copies of R. 

Proof. Define F(X) = 0 Rx where each Rx is a copy of R and let £x :Rx-> © Rx 
xeX xeX 

be the injections. Define £ : X -> G(@RX) by setting t;(x) = G(i;x)(ux) where uxe 
e G(RX) is the ufel. xeX 

— tG(®Rx) 

Next, let A be any object in K and let f :X -> G(̂ 4) be any function. Then, tof(x) e 
e G(A) there is a unique morphism fx:Rx -+ A with G(fx) (ux) = f(x). Consequently 
there is a unique morphism h: ®RX-^>A with h£x = fx. Then G(h) £(x) = G(h) . 

xeX 

. G(Q (ux) = G(hQ (ux) = G(fx) (ux) = f(x) so that G(h) £ = f. Thus F is adjoint 
to G. The converse follows from proposition 2 and the facts that F preserves co-
products and a set X is a coproduct of IXI copies of *. 
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5. Definition. We say that a morphism e of K is a concrete epimorphism if G(e) 
is a surjection. If ae = pe then G(a) G(e) = G($) G(e) so that G(a) = G(p). Since G 
is faithful, a = ft and e is indeed an epimorphism. An object P is called projective 
if for any concrete epi e: A -> B and any morphism J?: P -> £ there exists a (not 
necessarily unique) morphism a : P -> A such that ea = p. 

6. Proposition. The ufo i? is projective. 

Proof. 

Since G(e) : G(A) -> G(B) is a surjection there is some element a e G(A) with G(e) a = 
= G(/?) w. The unique morphism a : R -> A with G(a) u = a exists. To see that 
ea = fi we recall that the bijection K(JR, K) ~ G(K) was natural. This means that 
the diagram 

G(A) > K(R, A) 

G(e) hR(e) 

G(B) > K(R, 8) 

where the horizontal arrows are bijective, commutes. Corresponding to /? in K(R, B) 
we picked the unique element G(/?) u in G(B) and since G(e) was a surjection there 
existed an element a e G(AL) with G(e) a = G(p) u; ae K(i?, 4̂) was chosen via the 
natural bijective arrow on the top and hence hR(e) (a) = /? i.e. ea = p. 

7. Proposition. Projective objects are closed under coproducts. 

Proof. Let P^ be a set of projective objects and let 7̂  : P( -> P be their 
coproduct. We want to show that P is also projective. For this let c : A -> B be con­
crete epi and let /?: P -» B be any morphism. 
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Then we have morphisms Pnt : Pt -> B and since each P{ is projective, there exists 
morphisms ht: P( -» A such that cht = >STT£ for every j . But then P being a coproduct 
of Pt there exists a unique h : P ~> A such that hnt = ht. Then chnt = jt?7r# for each L 
This implies that ch = /? since the 71,- are canonical injections. Therefore P is pro­
jective. 

8. Corollary. A free object is projective. 

Proof. A free object is a coproduct of copies of the ufo. 

9. Proposition. For any object A there exists a free object A and a concrete 
epi e :A -> A. 

Proof. Set A = F G(A). The following diagram 

6(A)-

A 

tells us that G(e) has a right inverse i.e. is surjective. 

10. Proposition. A retract of a projective object is projective. 

Proof. Let n : P -> P' be a retraction i.e. there is p: P' -> P such that np = 1P„ 
We shall show that if P is projective, so is P'. 

P' -*r P 

ßҡ 

-~^B 

Let e : A -> B be a concrete epi and let /?: P' -> B be any morphism. Then we have 7̂r : 
P -> B and since P is projective there is a : P -> A such that ea = fin. Then eap = 
= j87ip = /? and ap : P' -> ̂ 4 is the required morphism. Thus P' is projective. 

11. Proposition. The following are equivalent 

1. P is projective. 
2. If e : A -> P is a concrete epi then P is a retract of A. 
3. P is a retract of a free object. 
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Proof. 1 => 2. Clear from the following diagram 

P 

p,' ІP 

2 => 3). Proposition 9 tells us that there exists object P and a concrete epi e : P -> P, 
this means that P must be a retract of P. 

3 => 1). Corollary 8 and proposition 10. 

12. Examples, i) Let Grp (Abg) stand for the category of groups (Abelian groups) 
and homomorphisms. The infinite cyclic group Z is the ufo. A free group (a free 
Abelian group) is a free product (a direct sum) of copies of Z. Every group (Abelian 
group) is an epimorphic image of a free group (a free Abelian group). 

ii) Let Top stand for the category of topological spaces and continuous functions. 
The one-point space is the ufo. A free topological space is a discrete space i.e. a 
disjoint topological sum of one-point spaces. Every space is the continuous image 
of a discrete space. 

iii) In Cpt2, the category of compact Hausdorflf spaces and continuous functions 
the one-point space is the ufo. A free compact space is the Stone-Cech compactific-
ation of a discrete space. Every compact space is the continuous image of a free 
compkct space. A projective object is an extremally disconnected compact T2 space 
(cf. Gleason [G2]) and is always a retract of a free compact space. 

iv) In Aw the category of transition systems with input W the transition system 
Mw is the ufo. If Aw and Bw are two transition systems whose sets of states are A 
and B then their coproduct is given by the transition system whose set of states 
is given by the disjoint sum of A and B. A free transition system is a coproduct 
of copies of Mw. Other propositions also find justification. (See Giveon [ G l ] for 
details.) 

References 

[II] Isbell, J. R.: Structure of Categories, Bull. Amer. Math. Soc. Vol. 72 (1966), 619—655. 
[Gl] Giveon, Y.: Transparent Categories and Categories of Transition Systems. Proceedings 

of the Conference on Categorical Algebra La Jolla 1965, 317—335. 
[G2] Gleason, A.: Projective Topological Spaces, Illinois Journ. of Math. Vol. 2 (1958), 482 to 

489. 
[SI] Semadeni, Z.: Free and Direct Objects, Bull. Amer. Math. Soc. Vol. 69 (1963), 63-66. 

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR, INDIA. 
Now at INDIAN INSTITUTE OF TECHNOLOGY, DELHI, INDIA. 


		webmaster@dml.cz
	2012-09-21T11:42:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




