
Toposym Kanpur

John R. Isbell
Top and its adjoint relatives

In: Stanley P. Franklin and Zdeněk Frolík and Václav Koutník (eds.): General Topology and Its
Relations to Modern Analysis and Algebra, Proceedings of the Kanpur topological conference,
1968. Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1971.
pp. [143]--154.

Persistent URL: http://dml.cz/dmlcz/700597

Terms of use:
© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700597
http://project.dml.cz


Top AND ITS ADJOINT RELATIVES 

J. R. ISBELL 

Cleveland 

0. Introduction 

This paper is an informal presentation of much 01 Chapter III of "General 
functorial semantics" (to be published) including substantial outlines of some 
of the proofs. It was the basis of my lectures at the Topological Conference in Kanpur 
which treated more examples. I hope it may be intelligible to many readers, either 
by itself or together with the much longer forthcoming paper. 

1. Connections and Topological Objects 

Let us recall what adjointness means — especially because it comes in four 
forms, one of which is of primary interest here. 

We are concerned with two categories <$, Q) and two contra variant functors C: 
<€ ~~> 3), H: Q) ~-* <€. An adjunction on the right a of C and H is a natural equivalence 
between two functors hl9 h2 : Cop x Dop -> S symbolized by h_(X9 A) = <e(X9 HA), 
h2(X, A) = Q)(A, CX). This notation omits some necessary details — for / : X -> X\ 
g: A-* A!, there is hx(f, g) taking morphisms m: X' -> HA to the composite (Hg) 
mf: X -* HA, and similarly for h2. Some further such details will be usually omitted 
here. In particular, if there is an adjunction of C and H, there may be other adjunc
tions of the same functors. Fortunately, all of them are very much alike, and we 
may usually write "^(X, HA) ~ 3)(A, CX)" and treat " ~ " like an equality. 

It will be convenient to speak of the pairs of functors C, H, adjoint on the right, 
as connections. (Suitably restricted ones will be called Galois connections?) The first 
thing about connections is that, in the case of interest here, ^ = Top, they are 
substantially the same thing as topological objects in 3f: objects of 3f provided with 
a compatible topology. 

To see this, let us go back to the simpler notion of a group in <2). A group in Q) 
may be described as an ordered quadruple (A, ., ~l, e) forming a diagram 

-i 

.2 \} _ e Ao 
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in 3, satisfying the usual laws for groups. For instance, the associative law [xy] z = 
= x[yz] asserts the equality of two morphisms yl9 y2 : A3 -> A; yi runs (x, y, z) -> 
""* ([x.v]> z) ~~* \Lxy\ z ] ' anc* t^le VI c a n ̂ e described in terms of product objects 
and without reference to elements x, y, z. 

This is a diagram in 3), on an index category with three objects 0, 1, 2, and 
suitable morphisms, which takes each index object i to A1 for some A and satisfies 
additional conditions that may (like associativity) involve A3. Lawvere has shown 
[L] that a general theory of algebras in a category is possible (and manageable) 
as follows. One uses another index object 3, and in fact i for every natural number i; 
one adjoins morphisms between index objects a such as n1 :2 -> 1, n2 : 2 -> 1, 
so that i is already the l-th power of 1 in the index category; and one finds finally 
that an algebra in 3 is nothing but a product-preserving functor J -> 3 on the 
amplified index category J>'. 

For any sort of algebra, the appropriate index category turns out to be just 
the dual of the category of finitely generated free algebras of that sort. A great deal 
can be done with this system of (algebraic) functorial semantics, which we must 
slide over here in order to get to the notion of a topological object in 3). Just note 
now that in introducing the indices 3, 4, ..., one has lost a little: there cannot now 
be a group in 3 except on an object A all of whose finite powers exist in 3. Most 
of the categories of sets with a type of structure, in which one wants group objects 
or topological objects, are complete categories, having products and (inverse) limits 
of arbitrary diagrams. Most of them also satisfy more technical conditions (such 
as having a "generator") which will be alluded to here as "being well-behaved". 

When 3 is complete, any product-preserving functor A: J> -> 3 on the dual </ 
of the category of finitely generated free algebras of a given sort admits an extension A 
over the dual nffop of the variety of all algebras of that sort, preserving all limits 
in ifop. Moreover, every object of ifop is a limit of objects of -/, this is how A can 
be constructed — and it follows that A is unique up to an isomorphism of functors 
(natural equivalence). The category of algebras in 3 is equivalent to the category 
of contravariant functors C: i^ -> 3 which take all colimits (direct limits) in rT 
to limits in 88. 

Every variety if is "well-behaved"; each of these functors C has an adjoint 
on the right, and thus yields a connection (C, H) between if and 3. Conversely, 
if (C, H) is a connection, C takes all colimits to limits. Of course C does not strictly 
determine H, but it determines H up to isomorphism. Selecting adjoints HC for all 
iT-algebras C in 3 (which is not greatly different from selecting a square A2 of an 
object 4̂) and selecting adjunctions (cf. coordinate projections), natural transfor
mations C -> C correspond biuniquely to natural transformations H->fF. Omitting 
some details of definition, we conclude: 

The category of if-algebras in 3 is equivalent to the category of connections 
between if and 3. 
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Remark. This is true for arbitrary 3) if we take Y^-algebras to be suitable 
functors 1^op -> 2f\ true for complete 3f, with the usual definition of ^-algebras 
- / - » Q). 

Accordingly we are on firm ground if we define a topological object in a variety 
Y as a functor H: Top0** -> if preserving all limits. In fact we are on firm ground 
in defining a topological object in any category 3f as a limit-preserving functor C: 
Top^ -> 3f\ and we do so. The ground is general functorial semantics, which has 
not been developed in the literature (though considerable fragments of it are in 
Benabou's thesis [Bl]). It cannot be developed in this lecture; we allude to it in 
justification of calling a connection of Top and Qf a topological object. 

2. Topological £^-sets 

Topological groups are older than functors, and are usually defined as sets G 
with two structures making G a topological space and a group in a compatible way. 
This involves not only the categories Top and Gr of topological spaces and groups 
but also the standard forgetful functors 17: Top -> £f9 U': Gr -> $f% Note that we 
already have the category Top ® Gr of topological groups, without forgetful 
functors. Introducing U and U\ which can be varied considerably, we get forgetful 
functors 

Top ® Gr > Top 
I 

(1) 

Gr > & 

It must be noted that these matters are more special than the preceding ones; now 
think of categories Sf that are definitely well-behaved, like Top or a variety. A forget
ful functor in general is required to preserve limits. Hence a forgetful functor on Sf 
(which is well-behaved) is representable. The types Sf of set with structure in which 
we are interested are given by (such) a category 3f with a distinguished object P. 

For types 3fu Q)2, we may define Sf1 ® Sf2 (simply) as the category of Q)r 

objects C in ®2. The forgetful functor 9X ® 92 -> ®2 takes C to C(Pi). For Sf1 ® 
® Q)2 -> 2U form the composite U2C : Sft ~~> S; this is a .^-object in .5^, thus 
representable, and one gets a forgetful functor by choosing representations. The 
diagram (l) is not strictly commutative; the composite C .-> U2 C(Pi) and the other 
composite are merely isomorphic functors. The distinguished object P is a repre
senting object for these functors, which exists because the functors preserve limits 
and Qf1 ® S)2 is well-behaved. 

The distinguished objects Plt P2 are arbitrary, P depends on them by a functor ®: 
@ft x Q)2 -» Sf1 ® Q)2, the tensor multiplication of objects. 
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Holding P1 fixed, the functor Pt ® _ : 3f2 -> Q)1 ® Qf29 is left adjoint to the 
forgetful functor C i-> C(Pj). [Remark: as " ® " is adjoint to "Horn" in abelian 
groups. Evaluation C(P1) is related to homming by the Yoneda lemma. This is not 
a set-valued Horn but a lifted one, just as in abelian groups. Roughly, ® is adjoint 
to Horn in general.] 

Since (l) is nearly commutative, it gives us for each Qf1 ® ;®2-set M an underlying 
^x-set Mt and an underlying ^2-set M2 on isomorphic underlying sets. For a topo
logical group M one expects something sharper: a space Mt and a group M2 on 
exactly the same underlying set. Moreover, this Mx and M2 determine M. 

(Mx and M2 , given up to isomorphism, do not determine M up to isomorphism. 
For that, take two connected groups A, B, that are homeomorphic not isomorphic, 
such as the translations of the plane and the order-preserving affine transformations 
of the line. If A', Bf, are the corresponding discrete groups, then A x B' and A' x B 
establish the point.) 

To discuss this in general one needs a more detailed picture than (l). Note that 
(l) should really include a natural equivalence a between the two composites. This 
makes it a 2-dimensional diagram with a 2-cell a ("higher dimensional abstract 
nonsense": a necessary study, systematically begun in [B2]). We need do no more 
than recall how we got (l). 

A 91 ® 02-set C was defined as a ^-object C: 3\p -> 2f2. Then U2C is a 
.^-set on the set S = U2 C(P1), and C(Pt) is an object of 3f2 on the same set S. 
So stated, this is for arbitrary 3j. 

If P2 is a generator in the sense of Freyd and Px is a generator (in the sense 
of Grothendieck) then U2C and C(Pt) determine C up to a unique isomorphism. 

This will require some explanation. Freyd calls P a generator in C if the co-
variant functor hp represented by P is faithful, i.e. for any two morphismsf, g: X -> Y 
in # , for some e: P -> X, fe =£ ge[F]. The form of Grothendieck's definition [G]: 
for every object X and proper subobject W of X, there is e: P -> X not factoring 
through W. We shall not need to define subobject, for in wellbehaved categories, 
P is a generator if and only if no proper subclass of the class of objects includes P 
and is closed under the formation of colimits [13]. Thus every object can*be construct
ed from P by transfinitely iterated formation of colimits. This implies that P is a Freyd 
generator (or coseparator). 

It is not enough to have two Freyd generators Pj. To see this, consider complete 
lattices £%. Every object is a Freyd generator; but taking Pj = 0 (the least element), 
both C(Pt) (the greatest element) and 172C are essentially the same for all C. But 
not all C are isomorphic. 

To amplify "up to a unique isomorphism": if U2C = U2C and C(Pt) = CfP^, 
then there exist isomorphisms a : C -> C, and there is just one such that U2a and apx 

are identities. Moreover, any (iso-)morphisms a2, al5 between the composites with U2 

and the values at Pl9 which induce the same (iso-)morphism of underlying sets, are 
induced by a unique a; but the proof of this will be omitted. 
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The proof of the first part will be condensed. Using transfinite induction, 
one defines ax: C(X) -> C(X) for a colimit X of objects where a was previously 
defined, by choosing a representation of X as a colimit of (say) PV's. C and C take 
this to representations as a limit. The morphisms aw will induce a (unique) morphism 
ax of the limits if they commute with the morphisms in the diagrams, and thus if 
the portion of a that was previously defined is natural. To prove that (inductively) 
one proves first U2a = 1. We began with api = 1. If all U2(aw) are identities, then 
the coordinates of U2(ax) in the U2 C(W) ( = U2 C(W)) are the coordinates of the 
identity, so U2(ax) = 1. Then a is natural because U2a is natural, and l/2 is faithful. 

As for uniqueness, there is at most one natural transformation a: C ~> C 
such that either U"2a or api is an identity. 

From this theorem and the essential symmetry of (l) it follows that something 
very similar must be true if P2 is a genuine generator and Px a Freyd generator. 
In fact, exactly the same result holds then, and the proof transforms in a simple way. 
This adds some light on techniques, and also reduces the good behaviour hypotheses 
(which are considerably less for these proofs than for (l)). Here is a sketch. Fix X 
in 9t. One has 1: U2 C(X) -» U2 C(X)9 or by representing L72, a°x: Horn (P2, C(X)) -> 
-> Horn (P2, C(X)). This gives a natural transformation between the corresponding 
functors on the full subcategory si0 of Q)2 on the one object P2: natural, because 
it is natural after (faithful) homming into C(Pi). The induction runs as before up 
subcategories Afi of more and more colimits; when Ap takes in C(X), one has ax. 
Finally, a is natural because of homming into C(Pi). 

3. Topological i^-sets, continued 

To describe a group M in a suitable concrete category Q)2 one has an underlying 
object M2 and an underlying group Ml9 on the same ground set. It can happen that 
Mt and M2 do not suffice, though one usually does have faithful forgetful functors. 
Even then, M is no more than a quite small diagram in Q)2 around M2: M2 and its 
multiplication table. 

For topological objects M in sufficiently suitable Sf29
 o n e has again a sufficient 

description by means of the object M2 and the topological space Mt. The theorem 
does not apply to topological spaces in Top, for instance, and we shall see that 
it is false for them. 

A connection between Top and Top consists of adjoint functors C, H. UC is 
represented by a space V = H(P) (by adjointness). The space V = C(P) is on 
U C(P) = Horn (P, V) = U(V). Discrete spaces S are taken by C to (V')s: coproduct 
to product. So any X, as a quotient of the discrete space on the same set, goes to 
a topological space C(X) on Horn (X, V), mapping continuously (by identification 
of V with V) into the product (V')x. Thus (i) C(X) is the set of functions Horn (X, V) 
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in a topology finer than the topology of pointwise V'-convergence. (ii) C is functorial, 
i.e. the functions 17 C(f) are continuous. This can be broken up into three simpler 
statements, according to the factorization off into a quotient mapf0, a coarsening^, 
and an embedding f 2 ; moreover, (iii) C(f0) must be a topological embedding, since f0 

is a coequalizer and C dually preserves colimits. And (iv) C dually preserves coproducts 
(disjoint sums). 

There are no further conditions; Top is well-behaved, and every C satisfying 
(i) — (iv) has an adjoint. There is no relation between Vand V' beyond the common 
underlying set. For any Vand V' on the same set, one can give all C(X) the topology 
of pointwise-convergence. The adjoint H then is also defined by pointwise convergence 
(with the roles of Vand V' reversed). 

There are other connections between Top and Top. The original version of this 
paper described one example. It turns out that besides the coarsest topology (point-
wise V'-convergence as in (i) above) there is a finest. In it, the limits of a filter A 
of continuous functions X —> V are those V'-pointwise limits g such that X has an 
open covering by sets U\ on each of which either (l) g and all elements of some 
Lt e A are constant, or (2) all elements of some Lt e A coincide with g. The proof 
will appear in "General functorial semantics". 

It is not known whether the topology just described or anything different from 
the pointwise topology, yields a connection of the category of Tychonoff spaces 
with itself. 

None of the usual topologies for function spaces such as the compact open 
can establish a connection. It is easy to satisfy (i) and (ii). However, the further 
conditions imply that C is determined up to isomorphism by its effect on Hausdorff 
ultraspaces. For the Hausdorff ultraspaces form a left adequate subcategory of 
Top ([12] proof of 9.1). 

This incomplete description of Top ® Top contains something remarkable: 
any Vand V on the same set can be used. In other words, the functor Top ® Top -> 
-> Top x Top implicit in diagram (l) is surjective on objects. We actually have 
rather more: a uniform way of using Vand V', making a right inverse Top x Top -> 
-> Top (x) Top. More can be said about this in connection with other natural 
functors in the system, but let us stop at the surjection. This generalizes, not very 
far, but far enough to apply to Fi-spaces, partially ordered sets, and some other 
categories sufficiently like Top. 

Consider well-behaved 3iu Sf2. To justify a simplified statement we use a weak 
transportability assumption on Q)2: for any object X of Q)2 and bijectionf: U2X -> S 
there exist X' in Q)2 and an isomorphism <P: X -> X' such that U2($) = f 

Given a representable functor W: S^Y -> S and an object V of Q)2 such that 
U2(V) = W(Pt): to lift If to a functor C: Off -> 92, dually preserving colimits, 
such that U2C = If and C(Pi) = V. If (a) P1 is a Freyd generator, (b) every morphism 
from P! to a copower of Pt is a coordinate injection, and (c) for every object Y of Q)2 
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and subset S of U2(Y) the subfunctor hS of hY whose values h S(X) consist of all f: 
X -> Y such that U2(f) factors through S is representable, then C exists. It can be 
constructed in a natural way, so that (though the proof will be omitted) for two 
such problems given by W, V, and W', V, any morphism IV-> W' and F-> V 
agreeing on W(PX) are induced by a morphism C -> C'. 

For the construction, of course the J-th copower L Px must go to an I-th power 
V1; by transportability, there is an 7-th power object properly situated on the under
lying set W(l. Pt). Because of (b), this effects the lifting for the full subcategory of 
copowers of P1# Any other object K of 3X is a quotient of the ("discrete") copower 
U1(K).P1 = \K\; accordingly W(K) is a subset S of W(\K\), and we construct 
C(K) in C(|K|) by means of (c). This takes care of all the morphisms from Px to K, 
coordinates of |K| -> K which one maps to coordinates of C(K) -> C(|K|). Morphisms 
from a copower I. Pkto K are described by their coordinates Pt -> K and mapped 
accordingly. For any K -> K', we have C defined on the composite |K| -> K -> K', 
which maps to C(K') -> Vm; since U2 takes this to a map factoring through W(K), 
it factors uniquely through U(K). 

Finally, C is a functor because equality of morphisms into C(K) reduces to 
equality of their composites with C(K) -> C(|K|) -> V. U2C = W dually preserves 
colimits, and we have lifted the limits from S to 32. 

Summarizing, to describe a topological 3-set it often suffices (3) well-behaved 
and P generating it) to specify the underlying ^-object and topological space, on the 
same ground set. At worst (3 still well-behaved) one needs the object C(P) of 3 
and the subobjects C(K) of powers C(|K|) of C(P) for all Hausdorff ultraspaces K: 
the objects of convergent K-tuples. The conditions for such a description to describe 
a topological D-set are less visible. But they tend to vanish if 3 has all imaginable 
subobjects ("tend" only, because the theorem above treats restricted C(K)'s with 
"pointwise" .^-structure). One has the essence of the condition if one says that all 
the subsets Horn (K, V) of powers C(P)m must be subobjects. 

4. Universal and Galois Connections 

For an abstract category 3, a universal connection is a pair of dual isomorphisms 
(F, F"1) connecting 3 with 3op. (These are adjoint on the right as well as mutually 
inverse, and adjoint on the left.) Evidently (F,F~1) is a distinguished connection, 
and it must be universal in some sense. The sense intended here will come out when 
we look at concrete categories. 

A Galois connection of abstract categories is a connection (C, H) such that 
CHC is naturally equivalent to C and HCH is naturally equivalent to H. Every 
Galois connection is an inflated universal connection, in the following sense. Given 
Galois (C, H) between 3X and 32, there exist an isomorphic connection (C , FT), 
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full embeddings Iy sis -> 3fi a universal connection (F, F_1) between si1 and si2, 
and reflectors Ry. 9S -> sij such that C = I2FRi and IF = 71F-1P2 . The proof 
is elementary in the technical sense and straightforward, and we do not have time 
for it. 

An abstract category has "all possible" universal and Galois connections, 
and there doesn't seem to be much interest in them until we move to concrete cate
gories. But two topics may be mentioned at this level; one of them might be very 
interesting, if properly understood. 

What sort of object in Of ® S)op is the universal connection? In other words, 
in the category of endofunctors of # ( = &op) having left adjoints, what sort of object 
is the identity? On the elementary level, the answer seems to be "not remarkable"; 
that is, the algebra of adjunction says nothing about morphisms between gene
ral right adjoints and 1. So I prepared that answer, intending to remark that 
nevertheless universal connections of concrete interest, such as Pontrjagin duality 
and Stone duality, tend also to be objects of special interest in the category of con
nections. But they seem to tend to be objects of the same sort of special interest: 
cogenerators. Pontrjagin duality connects the categories Ab of abelian groups and 
Cab of compact (Hausdorff) abelian groups. Ab ® Cab is again Cab (in fact, with 
the usual forgetful functors, the forgetful functor from the tensor product to the 
second factor is an equivalence). The Pontrjagin object is a circle, a cogenerator. 
As for Stone duality, it connects the Boolean spaces Bo and the Boolean algebras Ba. 
That it is a cogenerator is a non trivial result of Banaschewski (communicated at this 
conference); but it is xhe reverse of surprising. In the concrete formulation, the Stone 
duality depends utterly on the facts that the underlying objects, the two-point space 
and two-element algebra, are cogenerators. 

One need not go far to find that the universal connection may fail to cogenerate 
2f ® S)op but it can still fail gracefully. Consider the variety Ji of monoids. Jl has 
an involution a, where a(X) has the same ground set as X but the opposite multiplic
ation, and a(f) has the same values as f Then the universal connection Q = (F, F""1) 
and the connection I = (F^, aF'1) have only zero morphisms to each other. Since 
I x I has two different coordinate projections, Q is no cogenerator. 

What obstructs Q in Jl ® Jtop is (at least) the automorphism class group F 
of Ji, which is Z2. If one drops down to Gr, a and 1 become isomorphic, killing 
the automorphism class group. I and Q become isomorphic. I do not know if Q 
cogenerates in Gr ® Grop. In "General functorial semantics" there is an example, 
the category of componentwise separable real analytic curves with boundary (based 
on a paper of M. Stanley to appear in J. Australian Math. Soc), whose automorphism 
class group vanishes but whose universal connection is not cogenerating. It is not 
clear whether this can be profitably explained by "higher obstructions". I do not 
know a well-behaved category with trivial automorphism class group whose universal 
connection is not cogenerating. It seems likely that they exist; but it also seems 
likely that there is more structure in the question. 
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From just these examples one might hope that Q is a cogenerator if.® has a gener
ator G and a cogenerator C Not so, even with G = C. Use the based sets having 
two kinds of point besides the base point, and functions preserving kind or taking 
anything to the base point. For G, three points suffice. The a, I argument fits here too. 

The second topic that seems to belong to the abstract level is, how many Galois 
connections are there between a given 31 and @21 Let us just note that "one" is 
a likely answer. There is always a zero connection, given by the duality between the 
trivial subcategories on the product of the empty family of objects ("final object" 
or "right zero"). If @t = Top the empty product P must go to an object of Q)2 

with the same trivial monoid of endomorphisms. For instance, if <3)2 = Gr, there 
is^only the zero group, and this determines the connection. If Q)2 = Top, there 
is another trivial possibility ("empty connection"). Note that no such argument 
applies between Gr and Gr. The remarkable feature of Top is that the empty 
product P is a Freyd generator, so that under side conditions a connection can be 
determined by its effect on P. (In Gr ® Gr, which is Ab, there appear to be again 
no non-zero Galois objects; but for much more sophisticated reasons, and I have 
not checked it.) 

This is the place to notice a great many Galois connections between Top and 
a curious variety "T, consisting of the algebras with 2*° 0-ary operations (constants) 
ca and no other operations. Each of the connections we are speaking of takes P 
to a free algebra V2 on 0 generators, which is just the set of constants. To determine 
the connection (since Fhas a generator and Top a Freyd generator) it remains to 
specify the topological space V1 on the same ground set as V2 which is to correspond 
to the free algebra P2 on one generator. Any space on that ground set will yield 
a connection; our theorem to that effect does not apply, but it is easy to construct 
a connection nevertheless. A Galois connection is not so easy, but it is easy to see 
that it is sufficient that V1 should have no continuous maps into itself except the 
identity and the constants. This implies that Vt is connected, and determines the 
(trivial) continuous maps from any power of V1 to Vx. The resulting connection 
is Galois, resting on the universal connection between the category of powers of V± 

and the empty space and the category of free algebras and the empty product. The 
required spaces V1 have been constructed in wholesale lots, separable metric examples 
by de Groot [dG], compact metric examples by H. Cook [C]. 

Remark. De Groot and Cook have large families of these spaces which also 
have no continuous maps into each other except the constants. Some special interest 
attaches to the question whether there is such a family that is "large" in the technical 
sense, i.e. a proper class. The products of spaces in such a family, and the empty 
space, would form a full subcategory of Top that is closed under formation of limits 
but not reflective. 

Let us conclude by considering universal connections and the derivation of other, 
possibly useful connections from them, particularly apropos of Top and the real 
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line. For any connection (C, H) between concrete categories (3)u P,) and (S2, P2), 
we shall say that the objects Vx = H(P2) and V2 = C(Pi) represent the connection. 
(We have seen that they need not determine it, but they do their best.) A universal 
connection between (S, P) and (3op, Wop)9 represented by W and Pop, is universal 
among connections of (S, P) represented by W and something, in a sense which 
is readily worked out. For arbitrary 3, every such connection with (<%, Q) is associated 
with a colimit — preserving covariant functor F: $~-* 3—* Sop taking Q to Wop. 
F determines the connection up to isomorphism; and for well-behaved $ every such F 
induces a connection, represented by IVand something. 

In general functorial semantics, a (well-behaved) category $ with a distinguished 
object Q is a (complete) theory, and a functor preserving colimits and distinguished 
objects is a morphism of theories. This generalizes what one gets from ordinary 
interpretations, such as the obvious interpretation of the theory of semigroups 
in the theory of groups or the theory of rings, or the interpretation of the theory 
of Lie rings in the theory of associative rings by means of the bracket multiplication. 
The passage from interpretations to theory morphisms is not generally reversible; 
the preliminary work of "understanding" a theory is illustrated by our reduction 
of a topological space in 3 to a ground object A and the objects of K-convergent 
|K|-tuples in A. 

In particular, (Topop, Rop) (connected universally to Top) is the universal 
theory of connections of Top represented by R. Without describing the total structure 
of the Lawvere theory of commutative unitary rings, we may note that to fix an 
interpretation of it in (Topop, Rop) up to isomorphism it suffices to fix the inter
pretations of the constants 0, 1, and the operations + , —,. (Of course, consistently 
with the commutative law and the other axioms.) The standard interpretation takes 
0 and 1 to the corresponding morphisms Rop -> <5 . Rop (dual to R° -> R) and + , —, 
and . to the corresponding morphisms Rop —> 2Rop. It determines up to isomorphism 
an interpretation of the complete theory of commutative unitary rings in Top0/?, Rop, 
and the standard Galois connection between Top and Cur. 

Substantially the only way I know to prove that a connection is Galois is to 
exhibit the universal connection on which it rests. Here, Hewitt in effect defined 
Q-spaces [H] as spaces X naturally homeomorphic with H C(X), and showed that 
this C on completely regular spaces factors across a reflector upon Q-spaces. It is 
easy to verify that the image of C in Cur is full and reflective [II] , and trivial to 
extend over Top. 

This Galois connection between Top and Cur wipes out a large part of the 
structure of Top; accordingly, it is usually considered as belonging to completely 
regular or Q-spaces. It also wipes out much of the structure of Cur. Unfortunately, 
Cur has no proper sub variety, in the classical sense, which contains the image of C. 
But there are a number of other varieties connected to Top by essentially the same 
Galois connections [HIJ], [HJ], [II] , some of which are even full reflective in Cur. 
From the point of view of functorial semantics, these are subvarieties. One has 
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a subvariety whenever a morphism of algebraic theories 2Tx -> 2T2 induces a full 
embedding (necessarily reflective) f"2 -» f\. I think that no explicit characterization 
of these morphisms of theories is known. (An example, hopefully typical, is the 
obvious interpretation of the theory of monoids as a part of the theory of groups; 
groups have an additional operation ~1, but its values are determined by the values 
of the other operations.) So we are interested in algebraic theories F stronger than 
the theory of Cur, such that the given interpretation of algebraic Cur in (Topop, R) 
factors across 2T, 

Every complete theory % has an algebraic part °Ua, universal for interpretations 
of algebraic theories in °U. The construction is trivial; in this case °U = (Topop, jR0/?), 
%a is the dual of the full subcategory of Top on the finite powers of JR (of course, 
with distinguished object Rop). The corresponding universal variety V connected 
to Top by ,R is not entirely new; it contains the rings of real-valued functions closed 
under all continuous n-ary operations [II] , and certain archimedean lattice-ordered 
rings of generalized functions [HJ]. But much of the point of Fis in the fields in it, 
of which only the subfields of R are archimedean. (Of course all these algebras are 
lattice-ordered, v and A being continuous binary operations.) Something is known 
about the fields that are homomorphic images of rings C(X) [EGH]; very little 
about fields which merely admit continuous operations beyond v and A [A]. 
Still, however unfamiliar or difficult the algebra of V might be, it seems that if one 
wishes to study arbitrary continuous functions, one should be prepared to use arbitrary 
continuous operations. 
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