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^-COMPLETE REGULARITY AND ^-COMPACTNESS 

S. MROWKA 

Kalamazoo 

1. History; Bibliography 

£-compact spaces were first defined in [7]. A related concept, that of F-complete 
regularity, was discussed in [8] without, however, formulating an explicit definition. 
The first systematic investigation of both concepts as well as explicit definitions were 
given in [6]. A partial summary of results on the topological aspects of the theory 
is given in [9]. Algebraic aspects are studied in [5]; set-theoretic (closely related 
to Ulam non measurability) in [11], [12], [13]. Certain generalizations of these con
cepts are discussed in papers of Herrlich [3], [4], 

In the following sections we shall attempt to give a brief description of the basic 
results as well as to state unsolved problems and indicate probable directions of 
further development. 

2. The Embedding Theorem 

We are concerned with embedding into products. Maps into a product can 
be considered as collections of maps into coordinate spaces. Given a map h from 
a space X into a product X{F^: ( e S ) , we define 

(l) f^ = n^ o h for every i; e E 

where n, denotes the projection of X{F£ : £ e E} onto E^ (and n^ ° h denotes the 
composition of n^ with h). In such a way we obtain a collection g = {}\\ £eE} 
of functions such that/*: X -> F^. Conversely, given such a collection g of functions 
there exists exactly one map h into the product satisfying (l). For obvious reasons, 
we shall call h the parametric map corresponding to g . The purpose of the embedding 
theorem is to express some properties of the parametric map in terms of properties 
of the class g . 

The Embedding Theorem. Let g = {ff C e E} be a class of functions withff 
X -> E%. Let h be the parametric map corresponding to the class 5- We have 
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(a) h is continuous if, and only if, each f* is continuous; 

(b) h is one-to-one if, and only if, the class 5 satisfies the following condition: 

(i) for every p, q e X, p ^ q, there is an f- e $ with f*(p) =# /$(#)> 

(c) h is a homeomorphism if, and only if, h is continuous and one-to-one and 
the class $ satifies the following condition: 

(ii) for every closed subset A of X and for every p e X — A, there exists 
a finite system f*1? . ..,f*n of functions from F such that <f*1? ...,f*n> (p)^ 
<£ cl (f^, ...,f*n> [At],1) where c) denotes the closure in £*t x ... x £(*n; 

(d) assume that the spaces E^ are all Hausdorjf and assume that h is a homeo
morphism; h[X~\ is closed in X{£*: % e S} if, and only if the class $ satisfies the 
following condition: 

(iii) there is no proper extension sX of X such that every function f* e 5 
admits a continuous extension ft: eX -> E„ 

J S S, 

Furthermore, in condition (iii), /l suffices to consider only extensions &X of X such 
that eX C X{£^: £ e £ } . 

In connection with the embedding theorem we shall introduce the following 
definition. 

Definition. An {£,*: £ e S}-distinguishing, an [Ef ? e S}-separating, an 
E^:^e S}-non-extendable class for X is a class Qf = {f* : £ e S} of continuous func

tions with f*: X -» £* satisfying condition (i), (ii), (iii) of the Embedding Theorem, 
respectively. If all the spaces E^ are equal to a fixed space E, then we shall use the 
terms: an E-distinguishing, an E-separating, an E-non-extendable class. 

3. £-Completely Regular Spaces 

Given two spaces X and £, we say that X is E-completely regular provided 
that X can be embedded into some power of £. The class of all £-completely regular 
spaces will be denoted by (£(£). Classes of spaces of the form (E(£) will be called 
classes of complete regularity. 

The following are some examples of classes of complete regularity. The class 
of all completely regular spaces is a class of complete regularity; namely, it coincides 
with d(l) where J = [0, 1]. The class of all 0-dimensional T0-spaces is again a class 
of complete regularity, namely, (f(D), where D is the two-point discrete space. The 
class (£(F) is equal to the class of all T0-spaces, where F is the two-point space in which 

x) If f ^ , ...,f^n is a finite system of functions with/^.r X->E*., then by </, , ...,f* > 
we shall mean a map whose value at a point p e X, </^ , ...,/$„> (p), is equal to the point 
(f^(p),...,fu(p)) of the product E^ x ... x E«*n (i.e., </^ , . . . , / 5 n> is the parametric map 
corresponding to the class </^ , .. . ,f^>. 
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only one of the points is open. (£(£*) is the class of all topological spaces; here F* 
denotes the three-point space in which the only non-trivial open set is one of the 
points. It should be noted that the class of all Tj-spaces, T2-spaces, etc., are not 
classes of complete regularity. In fact, it can be shown that every class of complete 
regularity which contains all regular spaces must contain all T0-spaces. (See [9].) 

From the Embedding Theorem we obtain the following necessary and sufficient 
conditions for £-complete regularity. X e (£(£) iff the class C(X, E) of all continuous 
functions from X to £ is both £-distinguishing and £-separating (or equivalently, 
if X admits a class of functions which is both £-distinguishing and £-separating). 
Note that if X is a T0-space then an £-separating class is £-distinguishing. 

The class of £-completely regular spaces is the largest class of spaces one needs 
to consider when dealing with algebraic properties of sets of £-valued continuous 
functions. If £ has some algebraic operations and/or relations then the corresponding 
operations or relations can be defined on C(X, £) by means of the usual "pointwise" 
definition. It turns out that every C(Xa E) is isomorphic to C(XU E) where Xx is 
£-completely regular. This can be proven in the following way. Let $ be a continuous 
map of X onto Xu Then <P induces a map <P of C(XU E) into C(X, E) defined by 

5(g) = g o 0 for every g e C(XU E) 

It is always true that <P is an isomorphism (with respect to pointwisely defined oper
ations) but in general it does not map C(XU E) onto C(X, £). Now we have 

The Identification Theorem. For every space X there is an E-completely 
regular space Xx and a continuous map <£ of X onto Xt such that $ maps C(XU E) 
onto C(X, £). 

The pair (Xu $) is unique (up to homeomorphisms); we shall call it the £-
transformation of X; Xt will be called the £-modification of X. 

The £-transformation (Xu 0) of X can be also characterized by the following 
maximality property: iff is an arbitrary continuous map of X onto an £-completely 
regular space Y5 then there exists a continuous map g of Xx onto Y such that / = 
= go $. 

£- and /-transformations have already been considered by Cecil. If X is Haus-
dorff compact, then the D-modification of X is the space of components of X. 
(Blefko [1].) 

4. £-Compact Spaces 

All spaces are assumed to be Hausdorff. A space X is said to be £-compact 
provided that X is homeomorphic to a closed subspace of some topological product 
£m of £. The class of all £-compact spaces will be denoted by ${(E). 
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The Embedding Theorem provides us with the following criterion for £-com-
pactness: an E-completely regular space X is E-compact iff C(X, £) is a non-
extendable class (or equivalently, if X admits an E-non-extendable class). 

S\(l) is the class of all compact spaces; S\(D) is the class of all 0-dimensional 
compact spaces. The classes &(R) and $\(N) (where R and IV denote, respectively, 
the reals and the non-negative integers) will be discussed in Section 6. 

We list the basic properties of classes of compactness. St(£) contains £. Arbitrary 
products, intersections and closed subspaces of £-compact spaces are £-compact. 
Iff: X -> Yis continuous, X and Yt are £-compact, thenf~1[Y1] is also £-compact. 

We have the following generalization of the compactification pX. For every 
X e (£(£) there exists a unique £-compact extension pEX of X such that every conti
nuous function / : X -> Y where Yis £-compact, admits a continuous extension f * : 
PEX -> Y. fijX coincides with the usual [IX. 

If £ is £ rcompact and (£(£) = &(EX)9 then pEl X cz pEX for every £-completely 
regular X. The converse also holds true; in fact we have the following formula 
for pEiX: 

pElX = {pe pEX: there is no continuous function / : PEX -> £* such that 

f[X]cz£,f(p)££}; 

in the above, £* is an £-compact superspace of £x . 

It follows from the above that pEX depends only upon the class of compactness 
of X; i.e., R(E) = R(Et) implies that pEX = pElX for every X e £(£). 

There are various classes of compactness. If cf (cox) =£ cf (cod), then neither 
of the S(coA) and S(cod) is compact with respect to the other. On the other hand, 
if cf (G>A) = cf (cod), then St(S(a)x)) = R(S(ood)) (Blefko [1], [2]). The class R(D) 
of all 0-dimensional compact spaces is the smallest class of compactness; the class 
&(N) ( — Si(S((o0)) is an immediate successor of &(D) (i.e., if £ is iV-compact and IV 
is not £-compact, then £ is D-compact). However, if cf (coA) > co0, then there are 
classes of compactness between $\(D) and 5\(S(coA)). (As examples, we can take classes 
il(Z„); the spaces Zn are described in Blefko, [ l ] , [2]). There are various questions 
concerning classes of compactness. Does there exist an immediate successor of R(D) 
which is contained in R(S(cox))

c! Other sample questions are listed in [9]. 

Recently, there has been an attempt to decide whether every locally £-compact 
space has a one-point £-compact extension. The answer to this problem in its full 
generality is negative. However, various sufficient conditions have been given in [9]. 
This approach turns out to be quite successful — numerous specific theorems can 
be handled by the same process. Perhaps still better results can be obtained with the 
aid of generalized classes of complete regularity and of compactness. 
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5. Generalized Classes of Complete Regularity and Compactness 

These concepts were introduced by Herrlich [3], [4]. Let © be a class of topo
logical spaces. X is said to be (S-completely regular, or (E-compact, respectively, 
[in symbols, X e £((£), X e 5\((£), resp.] provided that X is homeomorphic to a sub-
space, closed subspace, resp., of a product of spaces from (£. Classes of the form 
(£((£) and &((£) will be called generalized classes of complete regularity and of compact
ness, respectively. This represents an ultimate generalization of our considerations; in 
fact, we have the following: a class of spaces is a generalized class of complete regularity 
(of compactness, resp.) iff* it is closed under taking arbitrary products and arbitrary 
subspaces (arbitrary closed subspaces, resp.). Herrlich also points out that other 
topological operations can be used to characterize these spaces. It is important to note 
that the identification theorem and the existence of jSeX still hold for these new 
classes. 

Each of the classes Trspaces, T2spaces, and T3-spaces are generalized classes 
of complete regularity (but none are classes of complete regularity). If (£ is the class 
of all S(coa) where coa is an arbitrary initial ordinal, then &((£) is a generalized class 
of compactness which is not a class of compactness. There are various open questions 
as to whether a given generalized class of complete regularity (compactness) is 
a class of complete regularity (compactness). Another problem is to determine, 
for a given class % a minimal class (E with 91 = (£((£) (91 = $*((£)). 

6. i?- and JV-Compact Spaces 

The purpose of this section is to mention some specific properties of R- and 
IV-compact spaces. We will quote here from various authors without giving specific 
references. They share various common properties, but it is not known whether 
every O-dimensional jR-compact space is IV-compact. (The converse is true.) 

There are various additivity theorems. Countable additivity holds true provided 
that the summands are closed and every continuous jR-valued (IV-valued) function 
can be continuously extended over the union. Without the second assumption 
finite additivity fails for both. There are, however, some affirmative results possible 
in this direction: X = Xt u X2 is JR-compact (IV-compact) provided a) Xt is in
compact (IV-compact) and X2 is compact (O-dimensional compact); b) Xt is 
.R-compact (IV-compact) and X2 is Lindelof (O-dimensional Lindelof) and both Xt 

and X2 are closed in X. The last statemet fails if X2 is not assumed closed. It is not 
known whether X1 need be assumed closed. 

The last problem is open in the following particular case. Let 91 be a class of almost 
disjoint subsets of IV; we topologize IV u 9? by agreeing that points of N are isolated 
and neighborhoods of A e 9? are of the form [A] u (A — S) where S is any finite 
subset. If 9l0 is "small enough" then IV u 9l0 is IV-compact (and there exist classes 9l0 
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of cardinality 2Ko such that IV u 9?0 is IV-compact), However, if we extend such 
a class 9?0 to a maximal class 9tx of almost disjoint subsets of IV, then IV u 911 

is not IV-compact. However, it is not known at what point in this process of enlarging 
the class 910 to a class 91 the space IV u 91 is no longer IV-compact. In particular, 
if 91 has only countably many more sets than 910 (i.e., IV u 91 is obtained from 
IV u 910 by adding a Lindelof space), must IV u 91 be IV-compact? If 91 is maximal, 
and we remove countably many subsets, say {An}9 is IV u (91 — {An}) necessarily 
not IV-compact? We do not know set theoretic conditions on 91 so that IV u 91 
is IV-compact 

We next consider continuous maps. An image of an R-compact (IV-compact) 
space under a perfect2) map need not be R-compact (IV-compact). The problem 
as to whether assuming that the domain is normal alters the situation has been open 
for several years. It has recently been shown that the images of R-compact subsets 
under perfect maps of normal countably paracompact spaces are R-compact. Perhaps 
the resolution of the last mentioned problem will occur only when it is decided 
whether every normal space is countably paracompact. 

There are sufficient conditions known for the R-compactness of the domain. 
E.g., the domain of a continuous function is R-compact (IV-compact) provided that 
the range is hereditarily R-compact (IV-compact) and the counter-images of points 
are compact. (In the IV-compact case, the domain must be assumed O-dimensional.) 

Some results may also be obtained under the assumption that the map preserves 
zero-sets. 

The role of Lindelof spaces is not yet known. Every Lindelof (O-dimensional 
Lindelof) space is jR-compact (IV-compact). It follows that every continuous image 
of a Lindelof space is R-compact. Does the converse hold true? Every Lindelof 
space X has the following property: for every i?-compact space 7, the projection 
of every closed subset of X x Y onto Y is incompact. Are the Lindelof spaces the 
only spaces with this property? (Analogous results hold for IV-compactness and ana
logous questions can be stated for IV-compactness under the assumption of 0-di-
mensionality.) 

7. The Defect 

This concept has arisen in connection with the estimation of exponents. We 
define exp£ X (Exp£ X) to be the smallest infinite cardinal m such that X is homeo-
morphic to a subspace (closed subspace) of £m . The £-defect of X (in symbols, def£ X) 
measures, roughly speaking, the difference between expEX and Exp £Z. The exact 
definition (suggested in the Embedding Theorem) is as follows: def£X is the smallest 

2) A perfect map is one which is continuous, closed, and such that inverse images of points 
are compact. 
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(finite or infinite) cardinal p so that there exists an £-non-extendable class for X 
of cardinal p. It is easy to see that Exp£ X = exp£ X + def£ X. The complete product 
theoretic interpretation of the defect is as follows. Call a space £ admissible provided 
that there exists a compact space £* such that (£(£) = (£(£*). 

Theorem. Let E be admissible. The following conditions on an E-compact 
space X are equivalent 

(a) d e f £ K ^ p ; 

(b) X is homeomorphic to a closed subspace ofCxE*3 where C is compact; 

(c) for every embedding X' of X into £m there exists a closed embedding X" 
of X into Em + P such that the projection of X" onto £m coincides with X'. 

Various theorems concerning the preservation of £-compactness can be stated 
in a more comprehensive form as rules concerning the £-defect. For instance, cor
responding to the theorem "If f: X --> Y is continuous, X and Yt are E-compact, 
thenfx\Y^\ is E-compacf\ we have the rule tidcfEfx[Y1'] S def^X + def£ Yt'\ 
Various results have been stated in this fashion but further work in this direction 
would seem to be worthwhile. 

8. Structures of Continuous Functions 

£-compact spaces appear in connection with the representation problem of 
homomorphisms (functionals) of structures of continuous functions. Suppose that £ 
has a certain algebraic structure (i.e., some operations and/or relations are defined 
on £). This structure is then inherited by C{X, £). We are interested in finding the 
form of homomorphisms of C(K, £). Speaking in very rough terms, the following 
can frequently be shown for various cases of £. If, for a given £, it is known that 
for any compact X, all C(X, £) have homomorphisms of a certain form, then homo
morphisms of C(Y, £) will have this form iff Yis E-compact. 

These problems are studied in a series of papers entitled, "Structures of Conti
nuous Functions". The first [10] contains a description of the present status of the 
investigation as well as references to other papers in this series. It should be pointed 
out that very few general (i.e., concerning arbitrary £) representation theorems 
have been obtained. However, some general proceedures have been developed. 
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