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TWO-SIDED NONSINGÏÏLAR TRANSFORMATIONS 

A. IWANIK 

Wroclaw 

1• Introduction 

Let (Xf£,/-t) and CY,#,v) be finite measure spaces. A subset 

Z of X is called null if Ze£ and ^a(Z) = 0. We denote by <A = -?UX) 

and S = B(Y) the corresponding quotient Boolean measure algebras 

modulo the null sets. By the Stone representation theorem, there 

exist unique to within homeomorphism O-dimensional compact Hausdorff 

spaces H, K such that A ,IB are Boolean isomorphic to the algebras 

<A ,$ of all closed and open subsets of H, K, respectively. Since any 

family of disjoint subsets of positive measure is countable, both 

H and K have the Souslin property and are Stonian. The measures st

and, v are represented in a natural way by positive normal category 

Radon measures on H and K, respectively CCH, Section 4)» 

The analogy between the structure of a measure space and the 

correspondrtog Stonian space can be extended to comprise also trans

formations of such spaces. A (r,f»)-measurable transformation 
-1 

r: X — > Y is called nonsingular i f f (Z) is a null set whenever 

Z is null. Any nonsingular transformation X induces an order continu

ous Boolean homomorphism 3^:0 —^ J h by means of the formula -Ĉ tZj » 

(V~ CZY], where C 2 denotes the the equivalence class modulo null 

sets. On the other hand, for any Boolean homomorphism T:jB -~^ A 

there exists a unique continuous map k: H — * K inducing T in the 

sense that I B « (k" £B)) , where A denotes the Stonian isomorphisms 

A — * A and $ — > IB . In case of an order continuous T, the map k 

is open (see C7], III 9«5). Consequently, to any nonsingular trans

formation X there corresponds a unique continuous open map k^: H — > K 

such that for any B in % and any Z in 9 satisfying CZ3 * Bfwe have 

(kr"
1CB))A =-Cr"1iZ)!l. 

The nonsingular transformation T: X — » Y will be called 
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two-sided nonsingular if T<Z ) is null whenever Z is null. The follo

wing weaker property seems to be of interest: a nonsingular trans

formation V will be called essentially two-sided nonsingular if the 

above condition holds for all null sets Z disjoint with some fixed 

null set X . 

The measure space X is called Borel if (X,E) is Borel isomorphic 

to a Borel subset of the unit interval. Two-sided nonsingular trans

formations of Borel spaces occurred in author's earlier work 03« 

The aim of this note is to describe such transformations in terms of 

topological properties of the corresponding maps between the associa

ted Stonian spaces (Corollary 2). We also present a related result, 

a measure theoretic characterization of essentially two-sided nonsin

gular transformations of Borel spaces with non-atomic measures (Corol

lary 1). 

2. Open maps in Stonian spaces 

All topological spaces considered in this paper are assumed to 

be Hausdorff. 

The following lemma can be inferred from 171, III 99 yet, for 

the sake of completeness, we provide a straightforward proof. 

Lemma 1« Let H be a O-dimeiisional compact space and K a Stonian 

space. For any continuous map k: H — * K the following conditions 

are equivalent: 

(i) k (A) is meager whenever A is meager, 

(ii) k~ (B) is rare whenever B is rare, 

(iii) if int U 4 0 then int k(U) 4 0, 

(iv; if V is open then k(?) is open. 

(The last condition says that k is an open map.) 

Proof, (i) 4==» (ii) =• (iii) and (iv) ==> (ii) are clear. 

To prove (iii) ===> (iv) we can, assume that 0 4 V C H is closed and 

open. Then k(V) is closed and W = int k(T) is a closed and open 
-1 

subset of k(Y). Therefore k (W) is closed and open and so is the 
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difference V - k" (W). Since the image of the latter is contained 

in the rare set k(V) - W, we must have V - k~ (W) = 0, implying 

k(V) = W. 

A continuous map k: H > K satisfying the above equivalent 

conditions can be viewed as topologically nonsingular. If, in addition, 

k(A) is meager for any meager A then k will be called topologically 

two-sided nonsingular. If k(A) is meager for meager sets A disjoint 

with some fixed rare set M then k will be called topologically 

essentially two-sided nonsingular. 

Lemma 2. Let H be a compact space and K a Baire space. If a con

tinuous open map k: H — > K is topologically nonsingular, then 

kfH^-s k(H) implies k(int H ^ = k(H) for any closed subset H1 of H. 

Proof. Letting HQ = int H1 we have kUl.- HQ) D k(H ) - k(H ) . 

Since H. - H is rare , k(H ) - k(H ) is meager. Since H is com

pact, k(HQ)is closed. Since k(H ) = k(H) is open, also k(H ) - k(HQ) 

is open, implying k(H ) = k(H ) = k(H). 

Let us recall that a map k: H —*> K is called irreducible if 

k(H ) 7- k(H) for any closed proper subset H of H. It is well known 

and is, in fact, a direct application of the Kuratowski- Zorn lemma 

that if H is compact then there exists a closed subset H of H such 

that the restriction k|rln is irreducible and k(HJ = k(H). 

Lemma 5. Suppose H is Stonian and k: H — > K is a topologically 

essentially two-sided nonsingular map. Then there exists a partition 

of H consisting of a rare subset H and closed and open subsets H 9 

such that, for each t *-* 0, k maps H homeomorphically onto a closed 

and open subset K of K. 

Proof. Let M C H be the exceptional rare subset for k. For any 

non-empty closed and open subset M of H - M there exists a closed 

subset M of M such that k|'M is irreducible and k(M ) = k(M). By 

Lemma 2 we have k( int M ) = k(M.)and, by the irreducibility of k|M , 

M. = int M .. Since H is Stonian, M has to be open. By the easy obser-
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vation that any continuous open irreducible map is one-to-one, k maps 

M1 homeomorphically onto k(M). By the Kuratowski - Zorn lemma there 

exists a maximal family of disjoint closed and open subsets of H, 

such that k restricted to any set in this family is a homeomorphism. 

By the first part of our proof, the union of this family is dense in 

H. The complement of this union, H , is the rare set needed for the 

partition. 

Let us note that if H has the Souslin property (any family of 

disjoint open subsets is countable) then the partition obtained in 

Lemma 3 has to be countable. Por countable partitions we have also 

the following converse result. 

Lemma 4* Suppose H and K are Stonian spaces and k: H — > K is 

a continuous map. If there exists a countable partition for k as in 

Lemma 3 then k is topologically essentially two-sided nonsingular. 

Proof. Since the counterimage of every rare set is rare, k is an 

open map by virtue of Lemma 1 • Let now HQ the rare set in the parti

tion and H , n = 1, 2,..., the remaining closed and open sets. If 

A C H - Hn is a meager set then A = AAH is meager for any n, 

so the k(A ) are meager and, finally, kCA) « Uk(A ) is meager, 
n n 

By the last two lemmas we obtain the following theorem. 

Theorem 1. Suppose H, K are Stonian spaces and H has the Souslin 

property.Then a continuous map k: H — * K is topologically essential

ly two-sided nonsingular if and only if the following condition holds: 

(a) there exists a countable partition H , H , •.. of H with 

H rare and the remaining H closed and open, such that, 

for all n 4 0, k maps H homeomorphically onto a closed and 

open subset K of K. 
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3. Measurable transformations 

Let us recall that a measurable transformation from X onto Y 

is called a point isomorphism if x is one-to-one and both T and 
-1 

1 are measurable and nonsingular. It is worth to note that this no
tion defends on th$ ideals of null sets rather than the measures and 

their numerical values. For any measurable transformation *t : X > Y 

we consider the following property of t , which is analogous to (a) 

in Theorem 1: 

(<*) there exists a countable measurable partition XQ, X., ... 

of X with X null and the remaining X of positive measu

re, such that, for all n 4 0, t: maps X isomorphically onto 

a measurable non-null subset Y of Y. 
n 

The term "measurable" is always used in the sense of the <f-algebras 

Xand4>. It is a routine to show that if *r satisfies C°0 then the 

associated continuous map kT: H — > K of the corresponding Stonian 

spaces satisfies fa) of Theorem 1• In order to obtain the converse, 

we will assume that both X and Y coincide with the measure theoretic 

product I4* of mr copies (** any positive cardinal number) of the unit 

interval endowed with the Borel <r-algebra and Lebesgue measure* 

By 1% we denote the assosiated Stonian space. It should be noted that 

Big, are mutually homeomorphic for all 1-4H.4 6i> 

K « M • A continuous map 

k: H — > X satisfies the condition (a) of Theorem 1 if and only if 

k = k r for soja&e measurable transformation T: X — > Y satisfying the 

condition^). 

Proof. We need only to prove the necessity. Let H^, H., ••• be 

a partition of H as in ta). To H.f H^t ••• there corresponds a par

tition a1# a2, ••• of 1 of the quotient Boolean algebra A(X)« Also 

to every ft » k(H ) there corresponds an element b of •(!)• This 
n n n 

correspondence is to be understood in the sense of the Stonian iso«» 

morphism A.For n>1, the restriction k|H induces a Boolean iso-
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morphism between the ideals generated by b and a . Let now X' and 

Y' be measure theoretic unions of two disjoint copies of X and Y, 

respectively. The Boolean algebras A(X') and©(Y') are still homogene

ous and isomorphic to Ad 1*). Therefore there exists an isomorphism 

S : B(Y') —*A(x') extending T . By Maharam's theorem C53 there n n 
exists a point isomorphism <r : X' — > Y' inducing S . We choose 

n n 
a measurable subset Y ' of Y satisfying CY '3 = b . Now by putting * n n n 
X =- X^tf (Y ') and Y = tf (X ) we obtain a point isomorphism n n n n n n * * 
(T IX = T that induces T . The a are disjoint, so by an easy in-
vn' n n n n u * J J 

ductive argument we can arrange that the X be also disjoint. Letting 
X-= X ~ U x we obtain -the required partition of X. Now it suffices o n 
to take any measurable transformation x n from X into Y and define 

X = U T . 
n 

In general T is not uniquely determined by k-r/j even to within 

equivalence modulo almost everywhere and even in case k r is a homeo-

morphism, see £5j, p. 702 . However, in the separable case, i.e. for 

1^W-^co it is easy to see that k^ = k^ implies <r= xr a.e. 

-U Separable case 

Suppose X and Y are Borel spaces. For the sake of simplicity 

let us assume that both ^u and v are non-atomic. Now, the quotient 

algebras /A and B are Boolean isomorphic to the quotient algebra 

Ml) of the unit inteinral. By Sikorski's result C8], 6.2, there 

exist point Isomorphisms of X and Y onto I. Therefore we can simply 

assume that both X and Y coincide with I. Here the results of the 

preceding section apply with **= 1 (and also I^WV^OJ ). The following 

measure theoretic fact is analogous to Theorem 1. 

Theorem 3. Let r: X — > Y be a measurable transformation, X = Y= 

I. Then x is essentially two-sided nonsingular if and only if x satis

fies the condition (*)of Section 3. 
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Proof. The sufficiency is clear. In order to prove the necessity 

we can assume that x is two-sided no n sin pillar. By Mackey 's version 

of von Neumann's selection lemma (C4J, 6.3) there exist a null set 

Z C Y and a Borel set X.CX - f (Z), such that xjX^ is a point iso

morphism onto the set r(Xj =T(X - T (Zj) . Let us note that X has 

to be of positive measure. Now following along the lines the argument 

of Lemma 3 we obtain a maximal family X., X , ... of disjoint sub

sets of positive measure, such that the restrictions tlX are point 

isomorphisms and X - U X is a null set. 
n 

As a corollary we obtain the announced in Section 1 characteri

zation of essentially two-sided nonsingular transformations. 

Corollary 1. The following conditions are equivalent for any non-

singular transformation *: I > I: 

(1) there exists two-sided nonsingular transformation r = r a.e., 

(2) there exists a Borel partition X,, X , ••• of I and a trans

formation T 0 = r a.e. such that T0|X is one-to-one for 
c «.. n 

all n, 

(3) there exists a countable-to-one transformation f . = T a.e., 

(4) there exists a bimeasurable (i.e. measurable and taking Borel 

sets into Borel sets) transformation f. = Z a.e. 
4 

Proof. Any one-to-one nonsingular transformation <r: I — > I is 

essentially two-sided nonsingular. Indeed, a* is bimeasurable and by 

the Kuratowski - Zorn lemma there exists a maximal necessarily coun

table, but possibly void family of pairwise disjoint non-null images 

Y of null sets Z . Letting X = U Z it is easy to see that <r | I - X 

is a two-sided nonsingular transformation. 

Now (1) «==> (2) follows from Theorem 3, <2) =-̂  (3) is trivial, 

(3) =.-> (2) is an immediate-consequence of the Luzin theorem ( [2J tV 46, 

p. 296), and (2) <==-* (4) follows from Purves' result on bimeasurable 

functions 161, p.149. 

The following is a consequence of Theorems 2 and 3> and the remark 

at the end of Section 3. 
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Corollary 2. let xi I — * I be a nonslngular transformation. 

Chen c is essentially two-sided nonsingular if and only if k̂ . is 

topological^ essentially two-sided nonsingular. 
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