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ON SPACES OP VECTOR-VALUED CONTIIÏUOUS PШTCTIONS 

J. SCHMETS 

LIEGE 

Let X be a completely regular and Hausdorff spree, end 3 be a 

locally convex topological vector space. 

Then we denote by tf(X) the linear- spree of the continuous 

functions on X and by C
o
(x) the space tf(X) endowed with the topo

logy of pointwise or simple convergence. 

As far as E is concerned, we denote by P its .oyster of semi-

norms and by P
1
 a systen of seni-norrs on 3 v.-hich is finer thnn P. 

If R is a locally convex property which is strblo for Hr.us-

dorff inductive limits and which is satisfied by any linear space 

when it is equipped with its finest locally convex topology, then 

Y, Komura [2] has introduced t
1
 r R-space associated to 3 as the 

linear space E endowed with the coarsest system of semi-norms P
f 

which (is finer than P and which) makes 3 satisfy property R. As 

examples of such properties R let us mention the following ones : 

the space E is ultrabornological, bornologi ca.1, barreled or eva

luable • 

Let us now recall the following results from [l]« 

Theorem 1. 

a) The space C (x) is always evaluable. 

b) The barreled space associated to C (x) is C (uX). In particu-

s c 

lar, C (x) is barreled if and only if X is a u-space which compact 

subsets are finite. 

c) The bornological space associated to C (x) is C (uX). In parti

cular, C (X) is bornological if and only if X is rcalcorpact. 
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d) The ultrabornological space associated to C o(X) is C ^ ( u X ) . In 

particular, C (X) is ul tr ah ornol o<;i c al if and only if X is real-

compact and such that all its compact subsets : re finite. 

In this theorem, C (x) stands of course for tf(X) endowed with 

the com pact-open topology coning from X, and u X for the realcompac-

tification of X. Moreover, calling bounding in X the s u b s e t s of X 

where every f £ tf(x) is bounded, uX is the smallest oubspace of 

uX containing X and where every bounding subset is relatively 

c oir.pact o 

Definiti ons. Let us denote by tf(X;E) the linear space of the 

continuous functions from X into E and by C p, o(X;E) the space 

tf(X;E) endowed with the semi-norms p!(p'^P', ACX finite) defined by 

P|(q>) = sup p'[cp(x)], Vtp £ tf(X) . 
x£A 

Then C_t (X;E) is of course a locally convex topological vector 
r 9 S 

space, which we write C (X;E) if P< « P. 

Ve are interested in characterizing the s o c i a t e d t o 

C D , o ( X ; E ) . I n [ 4 ] > we h a v e a l r e a d y g o t t h e f o l l o w i n g r e s u l t s < 
r , S 

Theorem 2, 

a) The space CD, (X;E) is a Mackey space if and only if (E,P') 
r , s 

is a Tv'ackey space, 

b) The evaluable space associated to C p t (X;E) is the space 
r , S 

0 (X;5) where P* is the system of semi-norms of the evaluable 
r , s e 
e ' 

space associated to (E,P*)» In particular, Cpl ^(X;E) is evalua

ble if and only if (E,P!) is evaluable. 

c) The space Cp. (X;3) is barreled if and only if Co(X) and 

r , s s 
(E,Pf) are barreled. Moreover, if C (X) is barreled, then the 

s 
barreled space associated to C^, (X;E) is C , (X;E) where P! 

r',S rIjS X 

is the system of semi-norms of the barreled space associated to 

(E,P<). 
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The tornolo^ical and ultrabornol epical cases seen hnrcler to 

study. In [4] > v/e ^ive sore results about the borr.clogicol c.se. 

It is the purpose of this note to show that an analogous rethod 

allows to get results about the ultrabornological case. A more 

extended version is under preparation [5]-

The hint goes on as follows. If B is an absolutely convex 

subset of E, then E^ denotes the linear hull of B when it is 

equipped v/ith the gauge of B; moreover 3 is celled a Ba--g>ch •j'.isk 

if E~ is a Banach space. Then a sequence is Frcke.Y (res-., fĵ sjt) 

convergent in E Ĵ o e if there is a bounded click (resp. a b curded 

Banach disk) B of E such that the sequence converges to c in 3^. 

Finally E is bornological (resp. ultrabornological) if end only 

if every absolutely convex subset of E which absorbs the Lackey 

(resp. fast) convergent sequences is a neighborhood of 0 i:\ I!. 

The following result indicates then where to look for. 

Theorem 5- If the space C-. (X;S) is ultraborn cl c ic-1 
r , s 

(resp. bornological)i then the spaces Ct(x) and (E,P') are ultra-
s 

bornological (resp. bornological)* 

The bornological result is theorem V „ 4 » 1 of [4]» the proof 

of the ultrabornological ccce goes on anclogously by use of the 

preceding remark. 

The aim is then to get converse results to t h e o r e . . i 3 o This 

can be done v/ith the help of the following generalization of a 

result of Nachbin [3]* 

Theorem 4-. If T is an absolutely convex subset of tf(X;E), 

there is a smallest compact subset K(T) of pX such that 

cp 6 tf(X;E) belongs to T if <p is equal to 0 on a neighborhood cf 

K(T) in pX (cp represents the unique continuous extension of cp 

from pX into pS)« 

If moreover there are p €• P and r > 0 such that 

T ) {cp 6 *(X;S) : p[cp(x)] -* r, V:: * J!} , 

then K(T) is the smallest corpsct subset of pX such that 

cp €• tf(X;E) belongs to T if cp vanishes on K ( T ) , and o;:o hrs then 
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T Э {ç. * tf(X;E) . ^(x) € Ъ (<r), Vx Є K(T)}. 

Proposition 5» If T is an absolutely convex subset of tf(X;E) 

which absorbs the fast convergent sequences of C
p
. (X;E), then 

r , S 

K(T) is a subset of uX
0 

Proof o Suppose there is an element x £ (3X\uX which belongs 

to K(T). Then we know there are open subsets 0 of pX which are 

increasing, constitute a cover of uX and do not contain x. By 

theorem 4> there is then a sequence cp € tf(X;E) such that 

cp j£ nD and q> (G ) = {0} for every n. One can prove then that 

-» oo 

B = ( S c n« : E I c I ^ 1 } 1 . n ^n . « n» } 

n=1 n-=1 

is an absolutely convex compact subset, hence a bounded. Banach 

disk of C , (X;E)0 Of course the sequence cp tends to 0 in 

tf(X;E)-n and cannot be absorbed by T, which is contradictory. 

Pronosition 6. If T is an absolutely convex subset of tf(X;E) 

which absorbs the Mackey (resp. fast) convergent sequences of 

C p, (X;E) [resp, of C (X;E)] and such that K(T) is contained 

in X, and if X satisfies the first axiom of countability [resp. 

and if (E,p) is metrizable], then an element cp belongs to T if 9 

vanishes on K(T). 

Proof.. Let us prove the "Llackey" version. By proposition 

V„4«7 of [4]> we know that K(T) is finite. So there is a sequence 

f € tf(X), with values in [0,1], equal to 1 on neighborhoods of 

K(T) and to 0 outside decreasing neighborhoods in X of K ( T ) , which 

intersection, is K(T). Let now cp £ tf(X;E) vanish on K(T)<> The abso-
2 

lutely convex hull of the sequence n f qp is then a bounded disk 

of C p f (X;E) : therefore the sequence n f cp is absorbed by To 

Moreover for every n, [(1~£ )<p] vanishes on a neighborhood in pX 

of K(T), S O (1-f )cp belongs to eT for every e > 0. Hence the con-

elusion since cp equals -7 [(l*~fn)q> + ^n^l *
>or every n* 
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Let us now consider the "fast" version. Let <p vanish on K(T) 

and {p s ntfU} be a countable system of semi-norms on E, equiva

lent to P. Then there is a sequence f € tf(X), with values in 

[0,1]f equal to 1 on a neighborhood of K(T) and to 0 outside 

Gn -» {x e X 1 pn[<p(x)] < n~4}. Then 

00 CO 

B - { 2 c n2 f f « E |o | * 1} 
n»1 n«1 

is a bounded Banach disk of C-. (X;E). But the sequence nf <p con-
Jt f s n 

verges to 0 in tf(X;E)-gf so it is absorbed by T. Hence the conclu

sion since £ ("I'-*)*?]" vanishes on a neighborhood in pX of K ( T ) . 

Theorem 7. 

a) If C0(X) is bornological and (EfP) metrizable, then C (X;E) 
s s 

is bornological* 

b) If C (X) is ultrabornological and (E,P) a Prechet space, then 

Ca(X;E) is ultrabornological. 

Proof, a) is theorem Y.4«11 of [4]» However one can proceed 

similarly to b) f which simplifies the proof. 

b) Let T be an absolutely convex subset of tf(X;E) which absorbs 

the fast convergent sequences of G (X;E). Combining theorem 4 and 

part d) of theorem 1f we get that K(T) is a finite subset of X. 

Then there are p £ P and r > 0 such that 

T O {q> * *(X;E) 1 p[<p(x)] *. r, Vx 6 K(T)} ; 

by contradiction : if this is not the case, there is a sequence 

sup 
x*X 

Yn £ y(X|E)\D such that sup Pn[<p(x)] -*- n"
4; then 

B - { - on n
2 „ . z |cn| - 1} 

n«1 n-1 

is a bounded Banach disk of Cfl(X;E) and the sequence n<p tends to 

0 in tf(X;E)Bf which is contradictory to ajn $ D Q rpne conclusion 

then follows from the last part of theorem 4. 
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.Theorem 8* If C (X) is hornological and if X satisfies the 

first axiom of oountabilityf then the bornological space associa

ted to C-., (X;B) is the space CBt _(X;B)f where PJ is the system 
if $ S h9 

of semi-norms of the bornological space associated to (liP1)* In 

particularf if C (X) and (EfP
f) are bornological, then Cp , (Xfl) 

is bornological® 

Proof* This is theorem ¥#4*12 of [4] but one can proceed as 

in theorem 9 for the proof of the particular case, which simpli

fies considerably the developments used there* 

Theorem 9 0 If CQ(X) is ul trabor.no! crical and (E,P) a Frechet 

space, and if X satisfies the first axiom of oountability- then 

G (X;E) is ultrabornological. s 

Proofs By part a) of theorem 2, C (X;E) is already a Mackey 

space. To concludes it is then sufficient to show that every li

near functional Z on tf(X;E) which is "bounded on the fast conver

gent sequences of C (XfE) is continuous* But then 
o 

T - {? 6 *(X;E) 1 |*(<p)| £ 1} 

is absolutely convex in tf(X;E) and absorbs the fast convergent 

sequences of C (X;E). By theorems 4 and 5 and by part d) of theo-s * * 
rem 1, K(T) is a finite subset of X. Proposition 6 permits then 

to define a functional @ on the ultrabornological space 

P - II (EfP) by 
X^K(T) 

«U) - ffU)t vf e P t 

if -p 6 tf(X;E) is such that <p(x) = f(x) for every x £ K(T). Then 

@ is a linear continuous functional on P since it is bounded on 

the fast convergent sequences of P, Therefore there are conti

nuous linear functionals Z on (E,P) for x £ K(T) such that 

* U ) - E / Zr [<p(x)]f Vq> € tr(XfE) . 
x^K(T) x 

Hence the conclusion. 
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