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MONOTONE MAPPINGS AND CELLULARITY OF ORDERED SETS 

D. KUREPA 

Beograd 

0. Notations and terminology. 

(0-1) For any ordered set (0, 4 ) and any x we put 0(.,x):-* 

siyly^O, y ^ x j , 0(x, .):={yly<s 0,x^yi:=(x,.)0,0[x, .):=(y/yeOfx^y}; 

0[x7:=[y|y£0,y^xVy^x} . 

(0-2) (Tf4 ) is a ramified table or a tree iff for every x£T f 

(T(.,x),4) is well-ordered. For every ordinal oc f R^Tr-lxfxeT , 

(T(.,x),4) has the order type oc} ; ^T (or ^(T,^)) is the first 

ordinal oc such that R^ T=-0. (T f4) is a ramified sequence iff ^Tfx]-

*^T for every x^;T . 

(0-3) If in a subset S of (0,4) the comparability relation 

is transitive, S is called a D-sul?set of (0,4). (0,4) is D-ref-

lexive iff (0,4) contains a D-subset, Od , of power 101 . 

(0-4) An increasing mapping f of (0,4) is almost strictly 

increasing iff for every xcO having at least one successor in (0,4) 

there is some y <£ 0 such that x<y and fx <fy . 

(0-5) Since the separability number sC , the cellularity number 

cC is the same for C and its Dedeklnd completion we shall assume, if 

not stated otherwise, that (C,4) is without gaps. 

(0-6) For any system S of intervals of (C,4) w e denote by 

eS the system of all endpoints of members of S . 

1. Theorem. Let T be a ramified sequence such that ef^T^CJ^^; 

if there is an almost strictly increasing mapping f of T into an ^ -
oo 

-separable chain C f then T is D-reflexive (for oC =- 0f v • TWoreme 
fondamental in 3. Kiirepa (1937) p. 1035 and (1941) p. 493). 

Proof. Let us consider the critical case (cf. -D. Kurepa (1935) 

p. 108/9, §3) that T is a sequence of rank tf with e&tf - <*>o6+4 &n& that 

every level R^T (-^<^T) is 4 #^ 9 Let f be any almost strictly 

increasing mapping of T into an jf^ -separable chain C ; let W be a 

subset of cardinality Hu and everywhere dense on (C f^) . Let 

(1-1) g:T~»T be a mapping of T into itself such that 

(1-2) 86T-^a<g(a) and f(a)< f(g(a)). For any weW let 

(1-3) Tw:={afe<£Tf f(a)£w <f(gg(a))}. 

(1-4) Lemma. U Tw=Tf d e l ) . 
w 

Proof. Let a ̂  T; then C(a,gg(a)) is an open interval of C ; 
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this interval is non-empty (e.g* it contains the point f(a) ; therefore 
the non-empty open interval C(a,gg(a)) of C contains at least one 
point w of W ; by definition of T , we have a £ T w . 

C-t-5) Lemma. There exists some neW such that lTnl*|TI, and 

(1-5-1) f(a)4n <f(gg(a)) for every a € Tn . 

The lemma is the consequence of Lemma (1-4). At first, the rela
tion (1-5-1) is true by definition of T11 ; consequently, if Lemma (1-5) 
was false, this would mean that |TWK|T| (w£W) what joint to 
5 p T w ! > T (implied by Lemma (1-4)) would mean that | W| ̂ cf |T| > J ^ M 

-contradicting the assumption that |WI» tf . 

(1-6) Lemma, T contains an antichain A of cardinality cflTl 

Proof. Again, we can assume that Tn is a nice ramified sequence 
of hight g *« f f a cjg and such that I R ^ ^ K ^ (oc<gTn) . 
Let S£" be the least initial ordinal cofinal to (f^-38^^- • -^t us define 
a qr -sequence 

(1-6-1) a »a^f..t>,a£,... (i<£~) of pairwise distinct points 
of T n such that the numbers 

(1-6-2) oo±9 /3 i defined by a ^ R^ Tn
f g(B±)eR T11 

satisfy i i 

(1-6-3) ot0<oc1<m..<ocl<... — ^ T 1 1 ( i < ^ ) 

(1-6-4) ^ i < ^ 1 ^ i (i* ̂  ) • 
The existence of (1-6-1) satisfying (1-6-2), (1-6-3) is obvious by in
duction argument, because T was assumed to be a nice sequence* Fur
ther, •the numbers (1-6-3) satisfy the following relations* 

(1-6-5) ccl < tt±< oo±Jtl ( U C ) . 
Let us prove that the points 

(1-6-6) g(a0)f g ( a 1 ) f # . M g(a±) ( i < ^ ) 
constitute an antichain in T f i.e. that 

(1-6-7) i < j < ^ ^ g(aA) // g(a^) . 
At first, in virtue of (1-6-5) we infer that ft ±<" °* 1 + 1- ̂

 4 P * $ 
thus /3^ < (I . ; consequently, i fg(a ,)»g(a^)J. On the other hand, if 
g(ai><g(a.) , then since also a.<gva.) (v.(1-2)) these relations 
would imply that the points a., \(a\) as predecessors of the same point 
g(a.)t;T , would be comparable: either 

(1-6-8) a . ^ g ^ ) or 
(1-6-9) g(ai)<a. . The case (1-6-8) does not hold, because (1-6-8) 

would imply 06 . £ /3- , contrarily to /J , <i o., •• On the other side if 
(1-6-9) holds, then 

f(g(ai))-^f(a.) ; this relation joint to f (a .) ̂ n <f (g2(a.)) 
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(cf. the definition of Tw) would yield 

f(g(ai))^n , contrarily to the assumption f(a^^ n ̂ f(g (a^)) 

for every ordinal i < <£ • Thus we established an antichain cT of car

dinality i<r(^T)i. 

(1-7-4) Lemma. Tn is D-reflexive. Since, by hypothesis 

^£af.)«,n -= ̂ T n for every a £ T n , it is sufficient to consider any 

<£ -sequence of cardinals k± (i<c£ ) such that ^EL k^lT^I-slT | and 

for any i ^ ^ to consider in the upper cone T^Tgta,),.) a chain L. 

of cardinality ^ k. (the existence of L. is obvious because 

f^M^fT° ( a e r ) , Tn being a ramified sequence)* Then the union 

of the sets L. is the requested D~subset of T of the cardinality 

IT/. Q.E.D. 

2» Theorem. Any ramified decreasing table (T$0) of intervals of 

(C,4:) such that ef * C satisfies )?\* s(Cf £ ) . (cf. -D. Kurepa (1935) 

p. 120 L. 3;, also J. Novdk (1952)b Th. 1.). 

Proof. One has 

(2-1) |eTI»ITI» supi^ jlR^I-ITI* sup{mT, f p Tl} , where mT:=* 

• supj IRjTI, (|^T) * (Cf. -D. Kurepa (1935) p. 74 § 10.) 

On the other hand, eT being everywhere dense on (C,̂ -=) on® has eT » 

s»sC .Consequently, |T|^sC and in virtue of (2-1): 

sup{mT, If Tl3>sC . In other words, 

(2-2) eT * (C,£) implies sup{mT, I^Tlj^sC . 

Now, we have the following two lemmas: 

(2-3) Lemma. s(C,^-) *mT for every T 

(2-4) Lemma. s(C,^ ) * ly? I for every T . 

The lemmas (2-3), (2-4) imply 

(2-5) s(C,4:)->sup(mT, \g Tl] for every T , in particular for 

every T satisfying eT * C . The relations (2-2), (2-5) yield 

(2-6) s(Cf£ ) * sup{mT, I^TJ} for every (T, 3 ) such that ©f » C; 

therefore also s(ct^) »IT| for every (T,3) satisfying eT -* C . 

Theorem 2 is completely proved. 

(2-7) We have still to prove Lemmas (2-3), (2-4). The first one 

being obvious, let us prove the second one. Now, Lemma (2-4) is obvious 

if mT> l/Tl or if mT « I^T I and # T is not an initial ordinal num

ber. Therefore let us consider the following case 

(2-8) affi*^, rT * ^ . 

(2-9) One has not & ( C , ^ ) < f ^ T l . 
In opposite case, there would be a subset M of (0 ,4 . ) such that M = C, 
JMI<)i ; now, l e t x€M ; there would be an index i ( x ) < f T and some 

oC 
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X such that 

(2-10) x e X € R i ( x )
T ^in tlie opposite case, there would be some 

X.€R.T such that xeX. for every j < ^ w h a t would imply that 
(x.) ^cJoc would be a strictly decreasing CJ^ -sequence of intervals 
of vC,—) , in contradiction with the assumption s(C, ± ) < K ^ ) . 
The relation (2-10) being established, we have the following two cases: 

(2-11) First case: jf T(* cj^) is regular. Since by hypothesis 
111. <-^, and l(X)<cuoC f0r every x£M , then the ordinal /3 :* sup i(x) 
(x€M) would be <CJOC - impossibility, because no interval l£R T con
tains any point of M , which is supposed to be everywhere dense in 
CC f£) . 

(2-12) Second case: ^ T C * ^ ^ ) is singular. Thir case is not 
possible either because by assumption /Ml<i^there would be some ordi
nal i such that I M K |i| and i < ^ J o 6 ; therefore, for any BeE±T 
the system (#,B)T of all members u of T such that u z>B would be 
a strictly decreasing i-sequence of intervals of (C,^=) , in contra
diction with /if>s(C,-^) . 

Consequently, the relation (2-9) is not possible which proves 
that Lemma C2-4) is true. 

3« Theorem. Every totally ordered infinite set (C,4=) satisfies 
s(Cf4z) * sup^lTljT being a ramified table of decreasing non overlapp
ing subintervals of (C,^) . (Cf. -D. Kurepa (1935) p. 120 § 12. C 3; 
also J. Nova* (1952) b Th. 1.) 

Proof. In order to prove Theorem 3 let us prove the following 

(3-D Lemma. If (C,^=) is any ordered chain and D any disjoint 
system of non-void intervals, there is a disjoint system D of disjoint 
intervals of (C,^> such that D 3>D and U D is everywhere dense 
in (Cf^> . 

The proof is obvious: if B:* CJD is everywhere dense, we set 
D :»D • If B is not eveirywhere dense, we have the complement K(v)i* 
C\B and the partition p(K) of K(D) into maximal convex subsets 
X of (C,-^) satisfying int X ¥ 0 . For every X<£ pK(D) , let sr(X) 
be any partition of X into disjoint non empty intervalsj then we 
define 

D^:«DcvU^r(X) (Xep K(D)) . 
One proves readily that D satisfies the conditions in (3-D. 

(3-2) Let us now prove Theorem 3: T being as in 3 let us deter
mine a table T of intervals of (C,^) such that T ^ T and the set 
eCT ) of end points of members of T is everywhere dense in (C,^) . 
To start with, let T-^ULT (i^^T) be the disjoint partition of 
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(Tf 3 ) in to rows or l eve l s of (T, 3 ) . We put T Q : - - ( R 0 T ) + , 
T* * (R^TOfT'NR T))* (cf. ( 3 - D ) . Let 0 < j < ^ T and assume tha t 
-L 1 O O ° 

the ramified table 
(3-3) UTZ (i<j) 

i 1 

is defined and that <f (3-3) - j , -^((3-3)) * T[ (i<j) . Let us de

fine T\ as well. If j is a limit ordinal, we define Tl to consist 

of all members of T, and of all sets of the form int DXJ (i < j) , 

where X DX. Z>... DX. Z> ... is a strictly decreasing sequence of con

vex parts of (C,̂ r ) such that X^^ T^ (i<j) and for some i<j one 

has Xi^T;[XTi . If j~< j , we define 

T>:» T . L J ( T > X T ) . 

(3-4) Let us define V:=* \JTj[ (i < jfT) . 

Then obviously, V D T . 

(3-5) If the set eV of endpoints of V is everywhere dense, 

then /eV/-s s(C,4) and since JeVl-*| VI >|T|, the theorem would be proved. 

If the set eV is not everywhere dense in (C,^) we extend V and defi

ne T as follows: 

Let us consider the set MV of all maximal chains of (V, 3 ) ; for every 

X£MV let i(X):~intHy (yeX) . Then i(X) is a convex subset of 

(C,*^) ; for every i(X) having at least 2 points, let t(iX) be a 

complete ramified table of subintervals of i(X) (thus in particular 

et(i(X)) is everywhere dense in i(X>) ; finally, we define 

(3-6) T+:* V u U t(i(X)) , (XeMV). 

Then obviously, T*3VoT and eT** (C,--=0 -« s(Cf^) . 

(3-7) Corollary. Every ordered chain (C,4=) satisfies 

(3-7-1) s(Cf40 =- supT{mT, | ^ T (}, (cf.(2-D). 

(3-7-2) s(C,^) -= supT{psT, />Tl3 , 

(3-7-3) s(C,^) =- sup{ c(C,^), supTl>Tf3, 

T running over the system of all ramified decreasing tables of convex 

subsets of (C,<-=) , and where for any partially ordered set (E,^) 

we put PS(E,~):* sup/I|, I running through the system of all anti-

chains (independent or free sets) C (E,^) (cf. •©. Kurepa (1937) p. 

1196/7 relation fondamentale; v. also (1939) p. 62, (1959) p. 205); 

s in p E is the initial character of Slavic words svobodno or slobodno 
s 

(=free). 

4. Theorem. Let °c be any ordinal number, and (C,--==) be any 

ordered chain of celullarity it^ f i.e. c(C,^) =* ̂ ^ ; then 

(4-1) s(C,^ )=*c(Cf ̂  )<£=.> for every ramified table (TfO) of 

intervals of (0,4-) there is an isotone mapping i: T -> I( <^>oc) and 

an ordinal/3<^JO6+1 such that for every x<£iT one has /-̂  (xj ^ft> . 
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Proof* 

(4-2) Necessity. Since, by hypothesis (4-D-p s(C,4.) =* K ^ , 
one has necessarily y (T, ~D) < <^+ 1 (cf. (3-7)); therefore, it is 
sufficient to consider the constant mapping i(x) * 0 for every xeT 
to see that one has an isotone mapping of (T, o) into K CJ^ ) with 
properties requested in (4-l)p« 

(4-3) Sufficiency. Let now (T, 3) be any ramified table of 
intervals of (C,^=) such that eT is everywhere dense in (C,4:) • 
in virtue of Theorem 2 we have 

(4-4) s(Ct* ) *IT/ . 
(4-5) Again, (TJ* sup[mT, tp?l} ** therefore, if mT^f^T/, 

then the last supremum equals mT, and consequently IT|=* mT ; therefore 
(4-4) yields s(Cf^)*mT ; this relation joint to s(C, ~)*e(Cf £ )* ^ a 
* mT would imply the requested equality (4-1)-••Therefore let us still 
consider the case that 

C4-6) mT< i/Tl. 
We claim that 

(4-7) | T | » ^ (*c(C,^)) , which jointly to (4-4) implies the 
requested equality (4-lh* In the opposite case, either ITKJ^ or 
/^/>>K^* The relation ITKK^ is not possible, because one has jf^ * 
« c(C,^) «• s(C,^) a/T/ „ and thus ^^/Tf. Consequently, there would 
be 

(4-8) ITI>K^, and by (4-6) 
(4-9) ^ I i ^ + 1 . 

The relation <f T ̂ ^ + 1 *s impossible (in the opposite case, any 
xe^CJ

c«z +1 t'Tf̂ >) would yield the corresponding CĴ -̂j -sequence of 
strictly decreasing intervals of (C,~) , contradicting the condition 
c(C,--=) » >K<* ) . Consequently, necessarily ^ T * ^oc+l and ever^ 
chain in (T, D> is 4 ^ . 

C4-10). Now, let us consider the mapping 1 and the ordinal /? 
occuring in (4-l)2* Since 
T a U i ^ f y ] , ( , € « c i ( ^ ) ) , IT/a^ lt li"VyJl^ f 

we infer that some y£iT satisfies |i j>3l* K ^ («IT>) . 
The set (X, 3) , where X:« i~ {yj , would be a subtree of the tree 
(T, D) of cardinality ^ + 1

 and of a rank f X ^ / 3 , where /3<^ + 1 > 
thus I^X klXI ; now we have the following 

(4-11) IMMW* Every infinite tree X satisfying JXf>!fXf is 
D -reflexive, (v. £. Kurepa (1935) p. 108/9 § 3, Th. 2). Therefore, X 
would contain a D -subset Y of cardinality K^+i 5 the disjoint 
partition I *UYty,.) (y«sR Y) would be in contradiction with the 
fact that IRJl^ctC/-) * ̂  and I Y(y,.L | ^ X , e^ery Y(y,.) 

" y oo 
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(yвY) being a chain in (Y, D) . 
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