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ON PRESERVING THE FIXED POINT PROPERTY BY MAPPINGS 

S#A. BOGATYf 

Moscow 

Let a metric compactum Y be a continuous image of a compactum 
X under a mapping p:X-*Y# The question arises when the fixed point 
property of the space Y can be infered from the fixed point property 
of the spacer? It is clear that each mapping f:Y-*Y (multi-valued 
mapping F:Y—*Y) of the space Y into itself generates a multi-valu
ed mapping G » p*3* fop (G • p «P»p) of the space X into itself . 
Therefore, if the space X has the fixed point property with respect 
to a class of mappings containing the mapping Gf then the mapping 
f (F) has a fixed point. 

1# Let F:Z-*T be a multi-valued mapping. We say that the map
ping F satisfies the Vietoris condition (V)f if for each point zeZ 
the set F(z) is acyclic (the reduced Vietoris homology groups with 
rationals Q as coefficients are regarded)* Further all multi-valued 
mappings are assumed to be upper semi-continuous and all single-valued 
mappings are assumed to be continuous. 

Proposition 1« If the compactum X has the fixed point property 
with respect to finite compositions of multi-valued mappings satisfying 
the Vietoris condition (V), then each acyclic continuous image Y of 
the compactum X has this property* 

Really, if F * F *### • F-, where F49 i » lf#.#tn,satisfies the 
condition (V), then G »p %F*p « p •Fn«###«F1*p is a finite compo
sition of mappings satisfying the condition (V)# Hence there exists 
a point x*X such that G(x) - (p •ftp)(x)ix • Then for the point 
y » p(x) we have (p-"1oF)(y) 3 x or p((p*1oF)(y)) « F(y) a p(x) » y # 
Consequently y is a fixed point of the mapping F# 

If the Lefschetz number A (F) of the multi-valued mapping F is 
defined (for example, if the mapping F is a finite superposition of 
mappings satisfying the condition (V) and the space Y has a finite*-
ly generated homology, that is, all homology groups H^(Y|Q) are fini-
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tely generated and for all sufficiently large n the homology groups 
Hn(Y;Q) are vanishing), then the Lefschetz number is defined for the 
mapping G as well, the equality A (G) » A(P) being true. There
fore, everything said above about the "multi-valued fixed point proper
ty" is justified for the "property of satisfying the multi-valued Lef
schetz theorem" as well# As p is a single-valued mapping, both I ^ 
and P-iop satisfy the condition (V) and hence G is a superposition 
of n mappings satisfying the condition (V) as well# In particular, 
we can state 

Proposition 2# Let the inverse images of the points y c Y under 
the mapping p:X-*-Y be acyclic and let. X be an MA -space in the 
sense of Powers [13] • Then Y is anMA-space as well# 

Corollary 1« Let the inverse images of the points y c Y under 
the mapping p:X~*Y be acyclic# Let X be an approximative absolute 
neighbourhood retract in the sense of Noguchi [12] # Then Y is an 
tIA -space# 

In 1946, Eilenberg and Montgomery [7] proved the following coincir-
dence theorem,, Let M be an absolute neighbourhood retract, N a com
pact metric Space and let r:N—*M, tiN-^M be continuous mappings 
such that t satisfies the condition (V)# Consider the Lefschetz 
number A (rft)»E(-l)

i trace (r^ t ^ 1 * ) * If A(rft) t 0 then r and 
t have a coincidence* 

Proposition 3« Por a compactum M with a finitely generated ho
mology, the following conditions are equivalent: 

1) for the space M the Eilenberg-Montgomery theorem is true; 
2) for the space M the Lefschetz fixed point theorem is true for 

multi-valued mappings P pos3essing the following representa
tion: P * r*t , where the mapping t satisfies the condi
tion (V) and is inverse to the single-valued continuous ma
pping while r is a single-valued continuous mapping; 

3) for the apace M the Lefschetz fixed point theorem is true 
for compositions of multi-valued mappings, satiafying the con
dition (V) (that ia, for the space M the Lefschetz fixed 
point theorem is true for mappings admissible in the sense of 
Powers [14]) ; 

4) for the space M the Eilenberg-Montgomery coincidence theo
rem is true for multi-valued mappings t:N-»M and r:U -* M 
such that both t and r satisfy the condition (V) (here 
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a coincidence point means a point x e N such tha t r ( x ) n t ( x ) f 0 ^ 

5) for every co l l e c t i on of s ingle-valued mappings ^y^l ~~^ M* 
g n :Y n - ^M t

 f
i + 1 - Y i + 1 ^ X i and g ^ Y ^ X j , where X± and Y ^ 

i * l t # # # f n - l f Yn are a r b i t r a r y compacta and the mappings f t̂ 

i « l t # # # f n f s a t i s f y the condi t ion (V) + the Lefschetz number 

A ( g n t f n , . . . , g 1 , f 1 ) * A ( g n f n
1 . • • g ^ 1 ) » 

aE(-l)1 trace (g^fJJ1* ... og^fj 1*) is determined andf pro

vided A(gn»fn,...fg1»f1)l
4 0, there exist points ylf...,yn » 

yie Y± , such that f ^ y ^ - gn(yn) and * i + 1 ( y i + 1 ) " g ^ i ) 

for i*lf##.fn-l; 

6) for every collection of multi-valued mappings fj^Y^—^M t 

gn:Yn — M. f
i + 1

s Yi + 1-*
Xi *»d gi:Yi — Xif where X ± and r „ 

i«lf###fn-lf Yn are arbitrary compacta and the mappings fj\ f 
gif i-=lf*.#f n satisfy the condition (V)t the Lefschetz num

ber 

A (gnt^f.tgit^) * A(gnf£ ... g ^ ) * 

• Z? (-1) trace (g** f~ • ••••g?*f1 ) is determined andfprovi-

ded A (gnt
f
nt...fg1t

f
1) t °f there exist points ylf.**»ynt 

j±e Yi# such that fx(yx) n ̂ 7n) * $ and f
i+1(yn+1)ngi(yi)^ 

for i« lf###fn-l # 

As the author has learnt at the Symposium, analogous results were 

also obtained by M# van de Vel# 

2# Let us consider a mapping G » p *f*p f where f:Y~*Y is a 

single-valued mapping. The mapping G is not supposed to have an exact 

selection or equivalently, there are 

examples where the mapping f ° p cannot G 

be lifted with respect to the projecti- x ^ x 

on p# Nonethelessf in some cases the P^^*** 

mapping G possesses an approximation g f >> 

such that the existence of a fixed point Y £—•* ̂  

for the mapping g implies the existence 

of a fixed point for the mapping f #Howeverf for this we are 

forced to require from the mapping p some stronger conditions of 

acyclicity# 
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Definition f31 • A closed subset A of a space X is said to be 

approximatively connected in X in all dimensions not exceeding n 

(A^AC^) if for each neighbourhood U of the set A in X there 

exists a neighbourhood V of A in X such that every mapping 

h:S —*V of a k-dimenaional space f where k-*nf is homotopic to 0 

in U# 

The above mentioned almost selection of the mapping G (almost 

lifting of the mapping f * p) is obtained by the following theorem, 

proved in slightly different forms by many authors [l,2f6f9f10fll] # 

Theorems Let p:X -> Y be a mapping of a compact urn X onto a 

compactum Y such that p (y) e AC^ for all points yeY # Then 

YeLC n and for each mapping h:Z -*Yf where Z is a compactum of a. 

dimension not greater that- n+lf and every £ > 0 there exists a map

ping g:Z -»X such that <* (pg,h) < S . 

This theorem implies easily enough the following fixed point theo

rems* 

We shall write Xefppf if each mapping g:X-*X of the space X 

into itself possesses a fixed point# 

Theorem 1# Let p:X —»Y be a mapping of a compactum Xe fpp 

onto a compactum Y such that p (y)e AC^ for all points yeY#Then 

Ye fpp provided d i m X . s n + 1 or dim Y^n+1# Moreover, in the general 

case the space Y possesses the following property: every mapping 

f:Y—*Y such that dim f(Y)-*n has a fixed point# 

This theorem wae proved by J»Cobb and W#Voxman [5] in the folio-, 

wing cases: 1) X is an n+1-dimensional polyhedron, 2) Y is embed-

dable into Rn+1
# 

A closed subset A of an ANR-compactum X is an AC^-subset iff 

A is connected [3] « 

Consequently, from Theorem 1 we obtain the following 

Corollary 2., If the 3pace Y i3 a monotonou9 image of an AR-com-

pactum Xf then for every mapping f:Y—*Y 3uch that dim f(Y) * 1 

there exists a fixed point# 

An analogous theorem in the infinite-dimensonal case is also true* 
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Theorem 2# Let p:X -*-Y be a mapping of a compactum X€ fpp 

onto a compactum Y such that p (y)cAc£ for all integers n and 

all points ytY. Then Y e f pp in each of the following cases: 

1) dim X or dim Y is finite-, 2) X or Y is a product of finite 

dimensional compacta; 3) X or Y is an approximative absolute neigh

bourhood retract in the sense of Clapp (AANR ) [4] # 

In the above theorems we have conditions on the embedding of the 

inverse images p" (y) of the points yeY # It is clear that these 

conditions can be avoided if any kind of simplicity of the local struc

ture of the space X is supposed, for example if XeLC n
# Xe LC or 

XeANR. But it turns out that the absolute properties upon the inverse 

images of points can be required also in some other cases# 

Definition, We shall write A e ACn if there is an embedding of A 

into an ANR-compactum X such that AeAC5# 

Theorem 3« Let p:X-*Y be a mapping of an AANR -compactum 
- l t « \ . . Ar̂ n X € fpp onto a compactum Y such that p • (y)eAC for all points 

ye Y# Then Y has the fixed point property if dim X<n+1 or dimY5n*l. 

Theorem 4« Let p:X —>Y be a mapping of an AANRc-compactum X 

onto a compactum Y such that p (y) e AC~ for all ye Y #Then if X 

has the fixed point property, so does Y # 

3. The basic method for proving Theorems 1-4 consists in finding 

a mapping g:X-*X such that the mappings fop and p*»g are near to 

each other• This easily implies that for each N and each £>0 there 

exists a mapping g:X-*X such that >̂ (i p,pg ) *£ £ for all k^N # 

It is evident from this that Theorems 1-4 of Section 2 remain true if 

we replace the fixed point property by the following property:Mthere 

exists an N such that for every mapping g:X—**X the mapping 

gN:X-*X has a fixed pointM# 

Let us remark also that for the space X the following conditions 

are equivalent: 1) there exists N such that for every mapping g:X->X 

the mapping g :X~*X has a fixed point; 2) there exists N* such 
k * 

that for each mapping g:X—*X the mapping g :X-~*X for some k-*N 

dependent on g has a fixed point• It is easy to verify that if there 

exists such N then we must put N*» N and if there exists such N* 

then we must put N « N*! 
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4. In [15] Sieklucki introduced the notion of the quasi-deforma
tion retract and proved that a quasi-deformation retract of an AR-com-
pactum has the fixed proint property. Let us formulate one theorem 
about the behaviour of quasi-deformation retracts under the cell-like 
mappings. 

Theorem 5^ Let p:X-*Y be a mapping of a compactum X onto a fi
nite-dimensional compactum Y such that p (y)c AC*° for every point 
y€Y. Then if X is a quasi-deformation retract of a finite-dimensio
nal AR-compactumf so is Y. 

Let p:X-*Y and q:T—*Z be mappings such that p (y)€ AC^ 
and q*1(z)eACrj for all points y c Y and zeZ, respectively. Then 
for the mapping pxg:XxT—»YxZ we have (pxq) (yfz) * 
" (p""1)(y) x(q"1)(2) € ACj x T for (y fz)£YxZ and consequently the 
following is true : if p:X —>Y is a cell-like mapping of an AANRc-com-
pactum X onto Y and X xI has the fixed point property, then the 
space Y x l also has the fixed point property. 

This result is of interest for there are contractible continua X 
with the fixed point property such that X x I has not the fixed point 
property (such continuum X cannot be an AANR -compactum) and there 

c 

are simply connected polyhedra X with the fixed point property such 
that X x l has not the fixed point property (such an AANRc-compactum 
cannot be contractible ) [8] • Let us note that if X is a quasi-de
formation retract of an AR-compactumf then the space X x l is also a 
quasi-deformation retract of an AR-compactum and hence it has the fixed 
point property [15] • 

5* If the compactum Y has a finitely generated homology,then 
there exists £ > 0 such that two 6 -near mappings f and g:X—*Y ge
nerate the same homomorphism of the homology. Hence (fp)* »f0p*» (pgf* 
* P*og*« Since p* is an isomorphism of the homology groups, the Lef *• 
schetz numbers A(t) and A(g) of the mappings f and g are equal. 
Prom this, it is evident that everything said in Sections 2 and 3 con
cerning the "absolute* fixed point property remains true with respect 
to the property of satisfying the Lefschetz fixed point theorem. In par-
tic ulart the multi-valued mapping G has an approximation gsX —* X 
such that the Puller indices $(g) and $(f) of the mappings g and 
f respectively are equal. Consequently, the validity of the Puller 
theorem [8] in the space X implies the validity of the Puller theorem 
in the space Y • 

The author has learnt at the Symposium that P.Minc proved the Lef-
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schetz fixed point theorem for quasi-deformation retracts of ANR-compa-
cta. Hence the following theorem is a theorem about the behaviour of 
the fixed point property. 

Theorem 6# Let p:X —>Y be a mapping of a compactum X onto a 
finite-dimensional compactum Y such that p (y) e AC for every point 
ysY # Then if X isa quasi-deformation retract of a finite-dimensional 
AHR-compactum, so is Y# 

6# We have considered only the metric compacta, but some of the 
results formulated here are true under more general assumptions. Let us 
close with a result concerning the fixed point property for an impor -
tant class of spaces including both compact and metric spaces. This is 
the class of p-paracompacta in the sense of Archangelskij, which con
sists of spaces admitting a perfect mapping onto a metric space# 

Theorem 7« Let a p-paracompactum X be an absolute neighbourhood 
retract in the class of p-paracompacta# Then for a compact mapping 
g:X-^X of the space X into itself, one can define the Lefschetz 
number A (g) and the mapping g has a fixed point if this Lefsche
tz number is different from 0# 

Prom this theorem one can derive generalizations of some above 
formulated theorems* 
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