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TOPOLOGIES ON SYSTEMS OF SUBSETS 

Milan Sekanina (Brno) 

1. Preliminaries. 

Having a general topological space (X,&) (&~- the system of all open sets) Exp (X,&) denotes 

the system of all nonempty sunsets of X , 2(<x"^~) - the system of all nonempty closed subsets in 

{X,<S?~) . For Exp(X„J^5 and 2 ( * , -^ r ) many different topologies were defined in the past. Now, we 

shall be interested in the most classical ones. Let K (X,&) denote one of the system Exp (X,^) or 

2<x. f) . Put S?X(X,&) = {{A : A G K(X,&), A C Ox U ... U On , A n 0 . 4 0 for i G fl,...,*}}: 

: n - positive integer, Ox, ... , 0n G ,j5^} . 

5 ^ ( X , ^ = {{A : A eK(X,&) , A n 0 , 4 0 for i = {1, ... , n}} : n - positive integer, Ox, ... , 0„ G 

£ <T} . ,5^3 ( X ^ l = {{A : A e K(X,&) , A C 0 } : 0 £ ^ } . &*t(X,&) is a base for the topology 

&~t(X&*) on K (X,&) (called for i = 1 finite or Vietoris topology, for i = 2 lower semifinite topo

logy, for i = 3 upper semifinite topology). 

Tt(X,&) denotes the corresponding topological space. 

We shall discuss certain possibilities of extension of the "object" function given for fixed i and fixed 

K(X,&) by (X,&) -> Tt(X,&) to a functor. 

If / : (X,&) -* (Y,&*) is continuous, one defines / * : K(X,^) -> K(Y,^n) by /*(A) = 

= {f (a) : a G A } for K(X,&) = E x p ( K , ^ and /*(A) = {/(a) : a G X } for K(X^) = 2(x> ^ 

( means closure in J ^ ' ) . Put T.(/) = / * . Denote by T the category of all Bourbaki topolo

gical spaces, by T0 the category of all T0-spaces, by Tx — Trspaces (allways with continuous, map

pings as morphisms) . 

2. The case Exp(X,&) . 

In this section TX(X,&), T2(X,&), T%(X,&) ,f* are defined with respect to E x p ( X ^ ) • 

Proposition 1. a) For i = 1,2,3 Tt(X,&) , T.if) yield a faithful functor from T to T . 

b) FOr i=l,2, Tt(X,&) ,Tt(f) yield a faithful functor from T0 to T0 . 

c) T3(X,&) ,T3(j) yield a faithful functor from TX to T0 . 

P r o o f . Ad a) The only not immediately clear fact to be proved is the continuity of T. if) . 

For i = 1 the proof goes along the lines of the proof of 5.10.1 in [5] , for i = 2,3 the proofs are 

quite analogous. 

Ad b) For i = 1 se [5] , for i = 2 see 2.2 in [1] . 

Ad c) See [4] . 

Now, let us check the continuity of the following mappings, which will be of importance in section 
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4 . Take (X,&) eT and put r? : X -* Exp ( X ^ ) with r? (x) = {*} for x 6 I . 

p : Exp(T . (X^ ) ) -> E x p ( X ^ ) with ju(A) = U A for A G Exp(Tj tX .^ l ) (so p is so called 

union mapping denoted in [5] as o) . 

Proposition 2. 17 and p are continuous. 

P r o o f . For r? the proof is straightforward (see [5] p. 153 for i = 1) , for /! and i = 1 see 

[5] 5.7.2 , for i = 2,3 the proofs are analogous. a 

3. The case 2 ( * ' ^ > 

In this section TX(X,&) , T2(X,gr) , T3(X,^) ,f* are defined with respect to 2(x'^r) . 

Proposition 3. Let (X,&) be a topological space. The following assertions are equivalent: 

A) (X,&) is normal (ie. two disjoint closed subsets in (X,&) are always separated) . 

B) FOr every topological space (Y,^) and every continuous mapping f : (Y,&*) -*• (X,&) 

the mapping f* : TX(Y,£F) -> TX(X,&) is continuous. 

P r o o f . Suppose (X,&) is normal. Put < 0 l f ... , On > = (A : A G 2 ( * ' j r ) , A C 0 ! U... 

... U 0 n , A n 0 . 4 0 for i = 1, ... , n} for 0 j , ... , On G ^ ^ (similar notation will be used for all 

spaces) . Let A G 2(Y- ^ , < Ox, ... , On > be a neighborhood of f(A) in Ti ( X ^ ) . Take such 

open 0 in £T for which / (A) C 0 C 0 C 0 . U ... U On . Put 0 ; = 0 n 0 , . (rl(0\) , ... 

... , r 1 ( 0 ; ) > is a neighborhood of A in Tj ( Y , ^ ) (A n T 1 (0,') = 0 =>f(A) n 0 ; = 0 => f(A) n 

n 0! = 0 , a contradiction) . Let B G < r 1 ( 0 ' i ) , ... , Tl(0')) , i.e. B C U rl(0',) . Then f(B) C 

C U 0\ C 0 and jW"c 0 C Ox U ... U On . It is f(B) n 0 . 4 0 as B n TUG,') * 0 implies 

f(B)n0.40.so f*«r1(o;),...,r!(o;)»c<0,,...,on >. 

Suppose (X,J^) is not normal. Let 0 be a neighborhood of a closed set M in (X,&) such 

that U non C 0 for any neighborhood U of M . Let (K,.^7) be the topological space defined as 

follows. 

1. F = 0 . 2. xGO-M is isolated. 3. VC0,VnM40 is open in (Y,&*) iff 

there is V open in (X,&) such that V C V and V' n jlI = V C) M . The inclusion map i from Y 

to X is clearly continuous. Now, < 0 > is a neighborhood of M in T^X . J^ ) . Suppose there is some 

open set < Ox, ... , On > in T, ( Y , ^ ) containing M , for which /*(< 0!,... , 0 n >) C < 0 >. We have 

M C Ox U ... U On , and there is such O' D M , which is open in ( X , ^ ) and 0 ' C Ox U ... U On 

The set 0 ' is closed in (Y,&*) , therefore O' G < 0 . , ... , On > as clearly 0 ' n 0 , 4 0 . We should 

have i*(0') G < 0 >. But i*(0') = 0 ' (closure in (X,&j) and so we would have 0 ' C 0 , which is 

impossible. ft 

Remark. Proposition 3 suggests that it is reasonable to restrict oneself at least to normal spaces 
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if one wants to get a category where TX(X,&) , T.(j) yield an endofunctor. As in [2] Keesling 

under CH and VeliSko in [8] without CH proved that normality of Tx(X,^rr) implies compact

ness of (X,&) , the restriction goes to compact spaces, where really such an endofunctor exists. 

Proposition 4. T2(X,J?r) , T2(f) yield an endofunctor in T . 

P r o o f . As f(g(A)) = fg(A) for continuous mappings f and g , it is sufficient to prove that 

for continuous f, f : (X,&*) -* (Y,^^') the map f* is continuous. Let A be closed in (X,&') and 

f*(A) = f(T) . Let Olt ... , On be open sets in (Y,^') defining the open set O in TZ(Y,^") . 

Suppose f*(A) G O . The set rl(Ot) is open in (X,ty') and all these open sets define the open set 

O' in T2(X, ff) . L e t B EO . Clearly f(B) n Ot *- 0 for all / . Therefore f*(0') C O . In the same 

time, O' is a neighborhood of A as A O rl(Ot) - 0 implies f(A) n G/ = 0 . • 

Similarly to the demonstration of Proposition 3 one proves 

Propositions. The assertion ofProposition 3 is valid after replacement Tx for T3 . 

Lemma. Every nonempty closed set in T3(X,fy) contains X. 

P r o o f follows from the fact that open sets in T3 (X, fj ) are hereditary with respect to closed 

subsets (in (X, *f)) . • 

Corollary 1. T3(X,^T) is always a normal space. 

Corollary 2. Let T4 be the category of all normal spaces. T3 (X, Jf) , T3 (f) yield an endofunctor 

in T4 . 

4. Algebras for T{ in the case Exp(X,^) . 

Results of the section 2 imply that T̂  (i = 1,2,3) defined with respect to Exp(Xo? ) with ??,/! 

is a nomad in T ([3]) . We shall make some remarks on algebras for Tj . By result of Manes proved 

in his Thesis for the category of sets these algebras are complete upper semilattices (X, sup) together 

with certain topology &f on X . From continuity of multiplication in algebra for Tj one gets the 

following necessary and sufficient condition on sup and \°j to have such an algebra: 

If A is a nonempty subset of X , a - sup A and O a neighborhood of a , then there exist open 

sets Oj,..., On in ®T such that 

1. A C O. U ... U On . 

2. A n O. + 0 for all i. 

3. When B C X , B C Ox U ... U On , B n Ot * 0 for all i then supB G O . 

A complete upper semilattice with such a topology will be called a Trsemilattice and denoted 

(Xsup,3^) . 
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Proposition 6. 1f (Xsup,5^) is a Jx-semilatlice and KJ~ is Hausdorff then $ is compatible 

with die ordering < Of UCsup) in the sense of [6] (see [7] , too). 

P r o o f . Let a,b G X , a < b. Take disjoint open sets 0',0",a G 0', b G O" . It is easy to see, 

that there exist disjoint open sets Ox,02 with a G Ox , b G 02 , Ox n O" = 0 and such that for x G 

G Ox , y G 02 we have sup {x,y } G 0" . For x G O , , x > b implies x G O" ; a > y for some 

y G 0 2 gives a G 0" . Both conclusions are false. D 

Example. Take a chain of the type (a? + 2)* , say M = {fl0»
ai. ••• » b„' ••• > b0}, a0 < ax < ... 

... < bn ... < b0 . Define the topology <^T on Af in the following way: all b are isolated, a0,a! 

are contained only in open sets with the finite complement. *$T is Trtopology , (Af,sup,:J^) is T ^ 

semilattice and every neighborhood of a0 containts points greater then ax . So in this case ST is not 

compatible with the ordering. 

The coarsest Kuratowski topology £/~ on X has only <p,X and finite sets for open sets. 

Proposition 7. Let (X,sup,30 be a T\-semilattice with infinite X. Then & is not the coarsest 

Kuratowski topology. 

P r o o f . The main tool si the following simple lemma; D 

Lemma. Let (X,<) be an infinite complete upper semilattice. Then at least one of the following 

assertions is true: 

1. There exists a G I having infinitely many neighbors under itself 

2. There exists a chain of the type co in (X,<) . 

3. There exists a chain of the type GO* in (X,^) . 

So let ( X s u p , ^ ) be an infinite Tx-semilattice. Suppose S ^ is the coarsest Kuratowski topology. 

Let 1. be valid from lemma. Then the element a should be contained in every open set as every open 

set contains: a',a" such that a = sup (a',a") . This is a contradiction. 

If a0 < ax < a2 < ... is a chain in (Z.sup) , then every open set in IfJ contains almost all ele

ments a. and also a = sup {a0,ax, ...} . I f a0 >ax >a2 > ... is a chain in (Xsup) , take O G £/"", 

a0 GO , ax non G O Now (X,sup,^*) is a Trsemilattice. Let Ox, ... , On G ^ , {a0,ax,a2, ...} C 

C Ox U ... U On such that A C {a0,ax,a2, . . . } , A n O. * 0 implies supA G O . We can put A = 

= {alfa2,a3i ...} . Then supA = ax e O , a contradiction. 
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