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ON QUASI-UNIFORM CONVERGENCE 

Massood Seyedin 

Tehran 

In this paper we extend the classical theorem that uniform 

convergence of a sequence of continuous functions implies the 

continuity of the limit function. This is accomplished by means of 

sequentially complete, U-Cauchy sequences and quasi-uniform 

convergence. 

Let X be a nonempty set. A quasi-uniformity for X is a filter U 

of reflexive subsets of X X X such that if U € U, there is V € U such 

that V ° V C U [4]. A quasi-uniform space (X,U) is complete if every 

U-Cauchy filter converges [4]. Let (X,T) be a topological space. For 

each A € T, let S = (A X A) U (X - A) x X and S = {s : A t T } . Then 

S is a subbase for a compatible quasi-uniformity on X called Pervin 

quasi-uniformity [4]. A quasi-uniform space (X,U) is R», if, given 

x (£ X and U £ U, there exists a symmetric W 6 U such that W o W(x) 

cz U(x) [3]. It is known that a topological space admits a compatible 

R„ quasi-uniformity if and only if it is regular [4, Theorem 3.17]. 

We get the following theorem as a consequence of the above definition. 

THEOREM 1. Let (X,U) be an R quasi-uniform space. Let x € X 

and U £ U. Then for each positive integer n there exists a symmetric 

entourage V G U such that V (x) c U(x). 
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DEFINITION. Let (X,U) be a quasi-uniform space. A sequence 

(x.) . . in X is said to be U-Cauchy if for each V (£ U there exists a j/ 1=1 

positive integer n such that for all i>n, x. € V(x ) . 

DEFINITION. A quasi-uniform space is said to be sequentially 

complete if every U-Cauchy sequence converges to a point in X. 

THEOREM 2. Let (X,U) be a complete quasi-uniform space. Then 

(X,U) J_3 sequentially complete. 

PROOF: Let (x.)., be a U-Cauchy sequence in X. For each positive 

integer n let F = [x.l. . Let f be a filter generated by [F : n is a 
° n u iJi=n ° J n 

positive integer}. Clearly f is a U-Cauchy filter. By hypothesis there 

exists a y 6 X such that f converges to y. Consequently for each U € U, 

there exists an F € f such that F cz U(y). Therefore for ail positive 
n n J v 

integers i > n, x. € U(y). Thus (x.) . , converges to y. 

DEFINITION [2]. A space X is sequentially compact if and only if 

every sequence in X has a subsequence that converges to a point in X. 

DEFINITION [l]. A (sub)base p for a quasi-uniformity U is 

transitive provided that for each B 6 p, B o B = B . A quasi-uniformity 

with a transitive base is called a transitive quasi-uniformity. 

THEOREM 3. Every R transitive quasi-uniformity of a sequentially 

compact space is sequentially complete. 

PROOF. Let (X,T) be a sequentially compact space and let U be a 

compatible locally symmetric and transitive quasi-uniformity on X. Let 

oo CO 

( x . ) . be a U-Cauchy sequence and ( x . . ) be a subsequence tha t 
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converges to some point p. Let G be an open set containing p. By 

hypothesis there exist W and V 6 U such that V = V o V, and V(p) c G 

- 1 CO 

and W - W and W o W(p) c V(p) c G. Since (x.)._.-, is U-Cauchy there 

exists a positive integer m such that for all i > m, x. € W(x ) 

and for all j > m, x. . £ W(p) . Then p t W(x. .) c W o W(x ) . Thus 
x € W o W(p) so that V(x ) c V o V(p) C G, and for i > m, x. G V(x ) 
n n r in 

C 1°° 

c G. Consequently tx.j. , converges top . 

It is natural to investigate whether the converse of the Theorem 2 

holds. Next we give an example of a countably compact, first countable 

Hausdorff space which is sequentially complete but not complete. 

We know that the Pervin quasi-uniformity is precompact and transitive 

and that a quasi-uniform space is compact if and only if it is complete 

and precompact [4, Theorem 4.14]. Let (0,w) be the space of all ordinals 

less than the first uncountable ordinal. It is known that (0,w) is a 

sequentially compact, first countable space that is not Lindelof (and 

hence not compact) [2, Example 8.16]. Let P be the Pervin quasi-uniformity 

onCQjWJ.By Theorem 3, P is sequentially complete. However, P cannot be 

complete since P is precompact and P is not compact. 

THEOREM 4. Every closed subspace of sequentially complete space is 

sequentially complete. 

THEOREM 5. Let (X ,U ) be any collection of sequentially complete 

quasi-uniform spaces, Lltcn the product, qtias i -unifunni Ly uf Lhc pruiluc L 

space is sequentially complete. 

DEFINITION. A sequence of functions (f.)"" , from a topological 

space X into a quasi-uniform space (Y,U) is a U-Cauchy sequence if for 
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each U € U there exists a positive integer n (depending on U) such that 

for each x € X and for each m > n,(f (x),f (x)) £ U. 
n m 

DEFINITION. Let (f ) . be a sequence of functions from a topological 
n/n=l M 

space (X,T) into a quasi-uniform space (Y,U). Then (f ) , is said to 

converge quasi-uniformly if there exists a function g: X -+ Y, such that 

for each U € U there exists a positive integer N (depending on U) such 

that for each n, n > N and each x £ X, (g(x),f (x)) £ U. 

THEOREM 6. Let (f.) be a sequence of functions from a 

topological space X into a Hausdorff sequentially complete quasi-uniform 

CO CO 

space (Y,U) such that (f.) . , __s U-Cauchy. Then (f.) . , converges 

quasi-uniformly. 

PROOF: By hypothesis for each x € X, (f.(x)) is a U-Cauchy 

00 

sequence. Let x 6 X and y £ Y such that limit ( f . ( x ) ) = y. Define 

f : X -* Y by f(x) = y = limit (-^(x))^ , . Clearly (fi)^=_1 converges 

quasi-uniformly to f. 

THEOREM 7. Let (f ) , be a sequence of continuous functions from 

i. topological space (X,T) into an R quasi-uniform space (y,U) such that 

(f ) _ converges quasi-uniformly to a function g: X -»Y. Then g is 

continuous. 

PROOF. Let x 6 X and U € U. Let W be a symmetric entourage such 

that W o W o W(g(x)) c U(g(x)). Let N be a positive integer such that 

for all n > N and for each z € X, (g(z),f (z)) <E W. Let n > N and let 

y € f"1 (W(f (x))); then (fn(x),f (y)) € W. We also have that 
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(g(y)>f (y)), ( g W » f (x)) € W so that (g(x),g(y)) € W o W o W. Thus 

g(y) € W o W o W(g(x)) c U(g(x)). Therefore g is a continuous function. 
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