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EXTENSIONS OF CLOSURE SPACEg AND APPLICATIONS 

TO PROXIMITY AND CONTIGUITY STRUCTURES 

K. C. CHATTOPADHYAY W. J. THRON 

Chandigarh, India Boulder, Colorado 

1. Introduction. In the very infancy of general topology F. Riesz [4] asked: 

which types of proximities have the property that they can be induced by elementary 

proximities on suitably constructed extensions of the original space. In 1952 

Smirnov [5] showed that EF - proximities have this property. In 1973 one of the 

present authors [7] proved that the much larger class of LO - proximities has the 

property. In both of these cases the underlying spaces as well as the extensions are 

topological spaces. 

However, the closure operator induced by basic proximities is not in general a 

Kuratowski closure operator, but only satisfies the conditions C. , C , C„ , given 
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below. Partly because of this Cech [l] introduced the concept of a closure space. To 

investigate whether the property of Riesz holds for larger classes of proximity struc­

tures it becomes necessary to develop an extension theory of closure spaces. Except 

for definitions of some of the basic concepts in [3] and results on embedding of 

closure spaces in cubes in [l] and [8] this is the first time that the subject has 

been more thoroughly studied. A detailed exposition of our investigation is given in 

[2]. Here we restrict ourselves to presenting those results which will be used in the 

applications to proximity and contiguity structures. This is done in Section 2. The 

results are then employed in Section 3 to prove that all separated RI - proximities 

have the property of Riesz and that an analogous result holds for separated RI -

contiguities. 

A function c: <p(X) -» «p(X) is called a closure operator on X if it satisfies 

the following three conditions: 

c r c(ø) = 0 

C 2 : c (A) э A , 

V c(A U B) = = c(A) U c(B) 

A pair (X,c) where c is a closure operator on the set X , is called a closure 

space. These concepts are generalizations of the more familiar Kuratowski closure 

operator and topological space, respectively. 

In our development the concept of a grill plays an important role. A grill on 

X is a collection @ of subsets of X satisfying 

G±l B D A £ @ = > B e @ 

G : A U B £ @ = » A £ @ o r B £ & 

G 3 : 0 £ ® . 
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Dual to the concept of neighborhood filter of a point is that of adherence grill of 

a point x . By it we mean the grill 

© (x) = [A: x e c(A)] . 

Since 

c(A) = [x: A £ © c(x)] 

it is clear that knowledge of all © (x) , x £ X , determines c completely just as 

knowledge of c determines all © (x) . The following lemma is an easy consequence 

of the appropriate definitions. 

Lemma 1. If (X,c) is a closure space then © (x) is a grill on X , for all 

x £ X . If for each x £ X the family © is a grill on X containing [ x] , then 

the operator g: <p(X) -> <p(X) defined by 

g(A) = [x: A £ © x] 

is a closure operator on 

A closure space (X,c) shall be called a G - space if 

®C(X1> = ®c(X2> * Xl = X2 * 

In what follows there is always an underlying nonempty set X . It will be conven­

ient to denote elements of X by x,y,..., subsets by A,B,... . Families of sub­

sets will be denoted by $1,-8 , .. . . In particular, 11 , 55 will be used for ultra-

filters and © for grills. Letters <*,p,Y»--- shall be used for collections of 

families of sets (i.e., a cr ̂ (<p(X))) . There will be some exceptions to these con­

ventions. The notation JAl , |$lj , ... refers to the cardinal number of the set 

under consideration. 

2. Extensions of closure spaces. Let ty: X -> Y be an inject ion, let c be a 

closure operator on X and k be a closure operator on Y then 

E = (i|r , (Y,k)) 

i s ca l led an extens ion of (X,c) i f 

(1) ^(c(A)) = k(^(A)) fl t<x> » f o r a 1 1 A C X , 

and 

(2) k(^(X)) = Y . 

Since ^ is an injection (1) insures that ^ is a homeomorphism from (X,c) onto 

(^(X),k') , where k'(B) = k(B) fl ̂ (X) , for all B C ^(X) , is the closure operator 

induced on »̂(X) by the closure operator k on Y . Condition (2) insures that 

^(X) is dense in (Y,k) . 
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Associated with each extension is its dual trace system 

X* = X*(E) = [T(y,E): y <E Y] , 

where 

T(y) = T(y,E) = [A: y £ k(^(A))] . 

* We speak of dual trace systems X and dual traces T(y) since the terms trace 

system" and "trace" are usually reserved for the families of filters and individual 

filters, respectively, which are the traces on X of the neighborhood filters of y 

on Y . 

The following lemma is easily established. 

Lemma 2. (a) For all extensions E and all y £ Y the trace T(y,E) is a 

grill on X . (b) T(I|T(X),E) = @ (x) . 

We are now able to state and prove our main result. 

* 
Theorem 1. Let (X,c) be a given G - closure space. Let X be a collec­

tion of grills on X satisfying 

[@c(x): x £ X] c X* . 

Define 

A* = [@: @ 6 X* , A £ ©] , 

cp: X -> X* by <P(x) = ®c(x) 

hr(o0 = (cp"
1(Q'))* U Ha ~ cp(X)) , a c X* , 

where r: <p(X* ~ cp(x)) -> ̂p(X*) satisfies 

(3) r(0) = 0 , r(p) z> p, r(p1 [} pg) = r(p1) U r((32) . 

Then (cp, (X ,h )) is a G - extension of (X,c) with dual traces T ( @ ) = ©, for 

all © e x * . 

Proof: Clearly cp is an injection into X . Moreover 

hr(cp(X)) = X* U r(0) = X* 

so that cp(X) is dense in X . Since T ( @ ) = [B: @ £ h (cp(B))] the condition 

T ( @ ) = @ = [ B : B £ @ ] is equivalent to 

B £ ® «> © £ hr(Cp(B)) . 

Th is i s the case i f f 

hr(<P(B)) = B* . 

If h is any closure operator on X then it is additive and hence 
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h(or) = h{a H <P(X>) U h(cr~9(X)) . 

Now a n cp(X) = cp(cp" (Q,)) ancj hence the requirement T ( @ ) = © for all © £ X* is 

equivalent to 

h(a f| ¥(X)) = (cp""1(a))* and h(<P(A) - cp(X)) = h(0) = 0 . 

Thus we can w r i t e 

hr(or) = (cp-1 (<*))* U r ( < * ~ 9 ( X ) ) , 

where r i s defined on <p(X ~cp(x)) wi th va lues in *p(X ) and i s a r b i t r a r y except 

for s a t i s f y i n g t h e cond i t ion ( 3 ) . We now note t h a t 

hr(<p(A)) 0 9 0 0 = A* n 9(X) 

= [©: © = ©c(x) , A G ®] 

= [® c (x ) : x £ c(A)] = cp(c(A)) . 

Hence 9 i s a homeomorphism onto (cp(X),h') where h ' ( p ) = h (p) p 9(X) , and 

(cp,(X*,h ) ) i s an ex tens ion of (X,c) . 

Note t h a t for every © £ X* 

©h (©) PI •.pWX)) = fcp(A): A £ ©] . 
r 

Thus © ^ ©' implies ©,_ (@) £ ©,_ (©') and hence (X ,h ) is a G - space, 
h n r u 
r r 

3. Applications. We begin this section by reviewing a number of definitions 

for proximities and contiguities. 

A collection n °f families of subsets of X is called a basic proximity on 

X if it satisfies the following requirements: 

V ^ € n => W = 2 

P2*. TI(A) = [B: [A,B] Gil] i s a g r i l l on X for a l l A C X . 

There a r e o t h e r , equ iva len t formulat ions for a proximity we chose t h i s one because 

i t p a r a l l e l s the d e f i n i t i o n of a b a s i c con t i gu i t y g on X given below: 

Con0: 21 € 5 =» | « | < *<0 

Con^ (2l| < NQ , n [ A: A £ 21] /- 0 => 21 € S > 

Con2: 5(21) = [B: [B] U II € £] is a grill for all 21 c $(X) , 

Con3: 1 8 C 5 U e S = > - 8 € 5 . 

A proximity (contiguity) is called separated if 

[ [ x ] » [ y ] ] € II =-> x = y , 

IM.ly]] e 5=̂  x = y . 
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A proximity (contiguity) i s called a Riesz or RI - proximity (contiguity) i f 

[A,[x]] £ II and [B,[x]] O ^ [A,B] £ n , 

21 U [[*]] e I and SB U [[*]] €g=>SUU-8€g • 

A proximity (contiguity) induces a closure operator c (c ) on X as follows: 

cn(A) = [x: [[x],A] e n] , 

c?(A) = [x: [[x],A] e %] • 

Let (X,c) be a closure space and le t c satisfy 

x 6 c([y]) » y ^ c([x]) , 

a condition which i s satisfied by a l l "induced" closure operators c and c 
i n 5 

The elementary proximity n on (X,c) is defined as follows 
*_ S£_ c  [A,B] G Til «• c(A) D c(B) £ 0 . 

Analogously we define the elementary contiguity g on (X,c) by 

21 £ ll « \n\ < K0 and n[ c(A): A £ <u] ^ 0 . 

A ^ r i l l © which i s such that for a l l [A,B] C © [A,B] £ f[ i s called a n~ clan 

and a g r i l l ©' for which a l l f in i te subfamilies 2J of ©' satisfy 31 £ J i s 

called a tg - clan. 

Whether a proximity (contiguity) i s an RI - proximity (contiguity) can be 

described in terms of properties of adherence g r i l l s . 

Lemma 3 . A proximity n o n X i s an RI - proximity iff for a l l x £ X 

© (x) i s a n - c l a n . A contiguity g on X i s an RI - contiguity iff for a l l 
cn 
x £ X © (x) is a g-clan. 

We also note the following characterization for separated RI - structures. 

Lemma 4. An RI - proximity (con t igu i ty ) is separated iff (X,c ) (or (X,c )) 

is a G - space. 

It is known [6] that if [A,B] £ n then there exists a maximal n~clan con­

taining [A,B] and that if n is an RI - proximity then all © (x) are maximal 
cn 

n~ clans. Similarly [3], 3J £ J implies the existence of a maximal £ - clan con­

taining 21 . Using Lemma 4 one easily shows that the © (x) are maximal 

5 - clans if J is an RI - contiguity. * 

Now let X be the family of all maximal II" clans with respect to a given 

RI - proximity n • Then 
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[@ ( x ) : x e X] C X11 . 
n 

Further le t 

A11 = [@: A ^ © e X11] 

and def ine 

hn(c^) = (cp(a))11 Uf f , for a l l a c X11 , 

then (cp , (X ,h )) i s a GQ - ex tens ion of (X,c ) i f n i s a separated RI -

proximi ty . Moreover, [ A , B ] £ n i f f t h e r e e x i s t s a (3, £ x11 with [A,B] £ ©> i f f 

@ € hn(cp(A)) D hn(cp(B)) . We thus have proved: 

Theorem 2 . Let n be a separa ted RI - proximity on X . Then t h e r e e x i s t s 

an extension (cp , (X ,h n ) ) of (x , c ) such t h a t 

[A ,B] e n iff [cp(A),9(B)] e n 1 . 

h11 

In a completely analogous manner one establishes: 

Theo rem 3. Let g be a separated RI - contiguity on X . Then there exists 

an extension (cp , (X' ,h*)) of (X,c ) such that 

2i € s i f f [9 ( A >: A e n] € 5 1 • 
h* 
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