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ON SC:.:E TCPCLOCICAL GAXS.S 

R. TELGARSKY 

Wrociaw 

The present contribution treats on some game-theoretic me­

thods in the general topology. 

The term ..topological games"was introduced by CEerge [2j 

(cf. also £3]) to distinguish those positional games whose rules are 

continuous (as multivalued functions). Here and also in [25], [26J 

and ["27] it is oroposed to use the term ..topological games" without 

that limitation of rules. The topological character of games consi­

dered here is determined by topological objects and topological ope­

rations being involved in actions of players and in calculations of 

plays' results. 

The first paper describing a topological game, although no ga­

me theory notion is used, is due to W.oieroinsVi [24J (cf. Section 1 

below). Topological games with the transfinite length of plays were 

used for the first time by A.V.ArhangeTskii [l] , however without 

using notions of game theory as well. The most widespread vnown topo­

logical games are the Banach-Mazur game over the unit interval ([22], 

[23j) and the binary game over the Cantor discontinuum f[4J, [llj , 

[15], [18J, [19], [20j, [21], [ 2 9 ] ) . 

Each one of eight games considered below is an infinite posi­

tional two-person win-lose game with perfect information (the theory 

of those games arose independently in Poland ([2C] , f2l]) and in the 

U.S.A. ( [ll])J . There are two players, player I and player II, 

which alternately choose certain objects, say A-,, E-,, A?, 39, ..., 

connected with a given topological space (e.g., points, subsets, co­

vers /. Player I chooses A- and each choice is made with complete in-

formation about previous choices. The choice of A (B ) is the n * 

move of player I (resp. olayer II) and Â-j. ,B, ,Ap,E-^,.. .y is a play 

of the game. The result of a play is either the win or the loss for 

a player. A strategy of a player is a function which prescribes the 

next move of him provided that a (finite) sequence of his opponent's 

moves is given. A strategy of a player is a winning one if, applying 

that one, he wins each play. It turns out that a winning strategy of 

a player describes a topological property of an approximation type. 
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1. Smooth sets 

A family £- of subsets of a set Y is said to be a L-family if 

(a) E6£ and E ^ X ^ Y implies X££, and 

(b) UtX n: n € N } ^ £ implies X n^£ for some n£N. 

Examples of L-families: 1. £ = {ECY: card EyX0}$ 2. £ = 

= {ECY: int«clyE / o}, where Y is a Polish space, and 3* £ = 
= (ECY: m*(E)>o}, where m is a Borel measure on Y with m(Y) = 1. 

Let X be a subset of a space Y and let £ be a L-family of sub­

sets of Y. We define a game G(X,Y,£) as follows. Player I chooses a 

subset D-t of X. After that player II chooses a subset E 1 of D-, such 

that E-. 6 £ if D, £ £ and otherwise he chooses E., = 0. Assume that 

D, ,E-j »... ,D ,E have been chosen. Then player I chooses a subset 

D + 1 of E n. After that player II chooses a subset E n + 1 of Dn+1 such 

that E + 1 £ £ if Dn+T ̂  £ and otherwise he chooses E n + 1 = 0. Player II 

wins the play <D1,E1,D2,E2,...) of G(X,Y,£) iff fi{ c±YDn: n6N}cx. 

The game G(X,Y,£), where Y = Rn and t= {ECY: card E>X 0}was 

described by W.Sierpinski [24] , however, he did not use any notion 

of game theory. Let us note that the Banach-Mazur game was proposed 

by S.Mazur in about 1928 (cf. (233, Chapter 6). The pioneer techni­

que of W.Sierpinski was recently extended by CDellacherie in [5] 

and T6], but not involving notions of game theory. The notion of L-

family is due to CDellacherie ([6] , Chapter I, D 13). In [5] and [6] 

a strategy of player II corresponds to the notion of scraper (in 

French: le rabotage) and the set X for which player II has a winning 

strategy in G(X,Y,£) is said to be smooth (Y and £ are fixed). The 
theorem which follows is just another variant of a theorem of CDel­

lacherie ([6], Ch.I, Thm.40), but the proofs are different. 

Theorem 1.1. Let X be a Souslin set in Y, let £ be a L-family 
of subsets of Y, and let us assume that X^£. Then player II has a 

winning strategy in G(x,Y,£J. 

Proof. Let X be a Souslin set in Y such that X€£, where £ is 

a L-family of subsets of Y. By Theorem 3.2 below there exists a se­

quence {£*y£2*••#^ °^ countable partitions of X such that £ n + 1 refi­

nes £n for each n £ N and such that n(cl YE n: n€rl}cx for each secue-

nce ̂ E-.,E2,...^ with E + 1 C E € S n , where n€N. We define a strategy 

s for player II as follows. Let n £ N and let *(D.-,...,D ) be a sequen­

ce of subsets of X such that D, ̂ D 02... PD^ and D, e£ for each k^n. 
x c. n K 

Then Dn = Ul
D
n/^E: E e £nJ and thus there exists a %n

e&n such t h at 
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Dn/^En€£. We set s(D1,...,Dn) = I>nr>En. If n€N and <D1,... ,Dn> is 

a sequence of subsets of X such that D-.PDpt?... 3DR and Vn4&* t h e n 

we set s(D1,...,Dn) = 0. If <D1,E1,D2,E2>...> is a play of G(X,Y,£J 

such that En = s(D1,...,Dn) for each n€N, then O f c l ^ : n€N}cx. 

Hence s is a winning strategy of player II. 

Theorem 1.2. Let X be a subset of an uncountable Polish space Y 

and let £ = {ECY: card E >X<,}. Then 
(a) If player I has a winning strategy in G(X,Y,£), then Y-X con­

tains a copy of the Cantor discontinuum. 

(b) If player II has a winning strategy in G(X,Y,£), then either X is 

countable or it contains a copy of the Cantor discontinuum. 

The proof of part (a) is similar to that one of (b), and part 
(b) was proved by W.SierpinsVri [24] . 

A separable metric space which contains no copy of the Cantor 
discontinuum is called totally imperfect ([14] , p.514). Assume that 
2 ° =HAfor someo(. Then every uncountable Polish space Y contains a 
set X which, together with its complement, is totally imperfect and 
has the cardinality 2 °(cf. [14], p.514), and thus neither of players 
has a winning strategy in G(X,Y,£), where £= {ECY: card E >H0}. 

2. Large sets 

Let X be a space. We define a game G(x) as follows. Player I 

chooses an open cover £, of X with card £,==2. After that player II 

chooses a £-,€£-,. Assume that f-j-E-.,... ,£ ,E have been chosen. Then 

player I chooses an open cover f , of X with card ̂ n+T^2. After 

that player II chooses a E +i^£n+-i • Player II wins the play 

<£1,E1,f2,E2,...> of G(X) iff U{En: n€N> = X. 

Theorem 2.1. Let X, and X~ be spaces such that either X, is a 

closed subset of Xp or X-, is 8 continuous image of X2. Then 

(a) If player I has a winning strategy in G(X,) , then he has a win­

ning strategy in G(x?). 

(b) If player II has a winning strategy in G(x?), then he has a win­

ning strategy in G(X-,) . 

The proof is easy and thus it is omitted. 
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According to the preceding theorem we may say that a space X 

is large (small) if player I (resp. player II) has a winning strate­

gy in G(x). 

Theorem 2.2. Player I has a winning strategy in G(x) iff X con­

tains a closed subset F which admits a continuous map onto the Can­

tor discontinuum. 

Hence, in particular, the closed unit interval and the Cantor 

discontinuum are large spaces. 

Proof. (=£) Let s be a winning strategy of player I in G(x). 

We set s(#) = {E(O),E(I)}, where 0 denotes the void sequence, and 

s(E(e1) ,... ,E(e.j,... *©..)) = t
E^ei> • • • >en»°) >

E*e;p • • • ̂ n*1)} f o r each 

<e..,... ,e > €{0,l}n and n€N. Further, we set 

F = U(n(x-E(e1,...,en): n €N>: <elf e2,.. .> € (o,l}N}and F(elt...eJ = 
= F-E(e-,f... f e ) for each <elf...,e > £{0,l}

n and n£N. Since 

(X-E(0))n(x-E(l)) = 0 and (x-E(e1,...,en,0 ))n(x-E(e]L,... ,en,l)) = 0 

for each ̂ e-j,... fe > 6^0, l}
n and n€N, we have 

F = n{UiF(e1,...,en): <elf..., en> €{0,l}
n}: n € N } . Hence F is clo­

sed in X. Let us set f (x) = <en ,e.,.. .> if x €(UF(e, ,... ,e ) : n€NJ. 
? iN It is easy to check that f is a continuous map from F onto 10,Ij- . 

(^=0 Let f be a continuous map from a closed subset F of X 

onto {0,1}N. We set B(elf...,en) = «dlfd2f...> €{o,l}
N: <dlf ...fdn> 

= <e1,...fen>}f E(elf...fen) = X-f~ (B?elf...,en)) and s(#) = 

= {E(0),E(l)} and siEfe^ ,... ,E(elf..., en)) = { E G ^ , ... ,en,o), 

E(elf...,en>l)} for each <elf...,en> £{0,l}
n and n€ N. It is easy to 

verify that s is a winning strategy for player I. 

By Tietze-Urysohn Extension Theorem (cf. [9], p.6?) we get 
from Theorem 2.2 following 

Theorem 2*3* Let X be a normal space. Then player I has a win­

ning strategy in G(x) iff X admits a continuous map onto the closed 

unit interval [0,l]. 

One can prove the following zero-dimensional variant of Tietze-
Urysohn Extension Theorem: Let f be a continuous map from a closed 
subset F of a normal space X with dim X = 0 into the Cantor discon­
tinuum C. Then f admits a continuous extension f which maps X into C. 
Hence and by Theorem 2.2 we have 
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Theorem 2»4« Let X be a normal space with dim X = 0. Then 

player I has a winning strategy in G(x) iff X admits a continuous map 

onto the Cantor discontinuum. 

It is easy to prove that each completely regular space X with 

ind X ^ O admits a continuous map onto [0,l]. Thus by theorems 2.1 

and 2.2 we have 

Theorem 2.5. If X is completely regular and player II has a 

winning strategy in G(x), then ind X -4 0. 

Similarly, if X is a normal space and player II has a winning 

strategy in G(x), then dim X ̂  0. 

Theorem 2*6. Let X be a subset of the Cantor discontinuum C 

such that C-X is totally imperfect. Then X admits a continuous map 

onto C and thus player I has a winning strategy in G(x). 

Proof. Let h be a homeomorphism from C onto C *C and let p be 

the projection map given by p(s,t) = s, where <s,t>€C*C We set 

f(x) = p(h(x)) for each x€X. Since (CC)-h(x) is totally imperfect, 

we have ({s}xc)nh(x) t 0 for each s € C Hence f(x) = C 

Let us note that in Theorem 2.6 the space C can be replaced by 

[0,l]. To prove that variant of Theorem 2.6 it is sufficient to re­

place h by a continuous map g from [o,lJ onto L0,1J * [o,lj. 

Theorem 2.1. If X is a scattered Lindelof regular space, then 

player II has a winning strategy in G(x). 

The proof proceeds by the transfinite induction with respect to 

h that x/*'= 0 in tl 

[25] • Thus it is omitted. 

oC such that X, = 0 in the same manner as the one of Theorem 9«3 in 

Theorem 2*8. Let X be a metric separable space. Then player II 

has a winning strategy in G(x) iff X is (at most) countable. 

Proof. (=>) Let X be a separable metric space and let s be a 

winning strategy of player II in G(x). By Theorem 2.5 we have ind X = 

= 0. Hence X can be considered as a subspace of the Cantor disconti­

nuum C Now we apply an argument given in [l2J (cf. also [4]). Let 

<B be the family of all clopen subsets B of C with 0 ? B ? C Then 
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card A = K<,. We may and do assume that player I, on his n move, 

chooses a Bn€(8 and after that player II chooses a ER €{Bn,C-Bn}. We 

set X-j = H{s(B): B€(B} and 
Xn+1 = U£n{s(B1,...,Bn,B)-s(B1,...,Bn):

 B C f i> : <B1» • • • » B n > ^ J 
for each n€N. We claim that XCU{X n: n€N}. Suppose there exists a 
x€X with xf Xn for each n 6 N. Then there is a B±e & with x^s(B1), 
there is a B0 € <B with x^s(B1,B0), and so on, i.e., there is a 
B̂-jjBp,.. • >€© with x f U{s(B1,.. • ,Bn) : n£NJ. However that situa­
tion cannot occur because s is a winning strategy of player II. Now 
we claim that card X -4 H 0 f or each n£N. Since (B separates points of 
X, it follows that each one of the sets IM-is(B): B € (B) and 
(]{s(Blf •.. ,B ,B)-s(B-,f • • • ,B ): B€(B} contains at most one point. 
Thus card X -£ K . 

o 

(^)we set X = ̂ x-pXp,...} and define a strategy s of player 

II as follows: sfC-.,...,^) is an element of £ containing x . 

Clearly, s is a winning strategy of player II. 

As a corollary to thorems 2.3 and 2.8 we get 

Theorem 2.9. Let X be a separable metric space. Then 

(a) player I has a winning strategy in G(x) iff X admits a continuous 

map onto [o,l], and 

(b) player II has a winning strategy in G(x) iff card X-£ M . 
o 

As a corollary to theorems 2.1 and 2.9 we have 

Theorem 2*10<(f!2])» Let X be a discrete space* Then 

fa) player I has a winning strategy in G(x) iff card X > 2 *, and 

(b) player II has a winning strategy in G(x) iff card X ^ H • 

3. Souslin sets 

Let X be a sub9et of a apace Y. We define a game G(x,Y) aa 

follows. Player I chooses a countable partition S1 of X, After that 

player II chooses a E ^ L . Assume that £-, fElf... »£n>
E
n nave been 

chosen* Then player I choosea a countable partition £ n + 1 of E • 

After that player II chooses a En+i^£n+v Player I wins the play 

<€lfE1,£2,E2,.».> of G(X,Y) iff fUclYEn: n€N>CX. 

A subset X of a space Y is said to be a Souslin set in Y fmore 

precisely: a F-Souslin set in Y ) if there exists an indexed family 
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{F(k1,...,kn): <-*--,,•..fkn> €N
n, n € N> of closed subsets of Y such 

that X = (J{n{F(k1,...,kn): n€N}: <k1,k2,.. .> €N
N}. 

Theorem 3*1* Player I has a winning strategy in G(X,Y) iff 
X is a Souslin set in Y. 

Theorem 3»1 is an immediate consequence of Theorem 3.2. 

Theorem 3*2. The following conditions are equivalent: 

(a) X is a Souslin set in Y. 

(b) There exists an indexed family { E(k1$... ,k ) : {k^ ... ,kn> 6N
n, 

n€N}of subsets of X such thatU{E(k): k€N} = X, 

U{E(klf...fkn>k).: k€N}= E(k1,...,kn) for each <k1,... ,kn> €N
n, 

n€N, and ntclYE(klf...fkn) : n€ N}CX for each <k1,k2, ...> €N
N. 

(c) There exists a sequence ̂ ^ t ^ ' •• *̂  of c o u n t a b l e partitions of X 

such that <-L+1 refines t^ for each n€N, and n(clYEn: n€NJCX for 

each sequence <E1,Ep,...> with
 E

n+i£
E
n
€£ n

 for e8cn n € N * 

For the proof of Theorem 3*2 we refer to [27J. Let us note 

that for Souslin sets in compact Hausdorff spaces one can obtain a 

game-theoretic characterization related to the technique of complete 

sequences of covers (cf. [lOJ, Section 9/. 

4. Webbed spaces 

Let X be a locally convex vector space. We define a game G(x) 

as follows. Player I chooses a sequence S^ = \E(l,l),E(l,2),.../ of 
absolutely convex subsets of X such that U ^ absorbs X. After that 

player II chooses a k-.€ N. Assume that 6-pk-p ... >£n-kn have been cho­

sen. Then player I chooses a sequence £n+-i = 0-(n+l,l) ,E(n+l,2),.../ 

of absolutely convex subsets of X such that E(n+l,k) C E(n,k ) for 

each k€N and such that U£n+i absorbs E(n,kn). After that player II 

chooses a kn+1€N. Player I wins the play ^ E - . ^ , ^ , ^ , ^ ,.. .> of G(x) 
iff for each sequence ̂ t-ptg,.. .ytdf) with S_ ^n

<oa and each se­

quence <x . , ,x2 ,.. .> €X^ with x € tn#E^n,kn? for e a c n n^ N> tne s u m 

ZTxn converges. 

A locally convex vector space X is said to be a webbed space if 

there exists an indexed family (E(k1,... ,kn): (t,... ,^n> €N
n, n£N} 

of absolutely convex subsets of X such that 

(a) U(E(k): k € N> absorbs X, 
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(b) U{E(k1,...,kn,k): k € N J C E O C ^ ... fkn) and U{E(k1,... ,kn,k) : 
k€N} absorbs E(klf...fk J for each <klf... ,kn> €N

n and n€N, and 

(c) for each <k1,k2,...> €N
N, for each <t-L,t2, ...>€ (R

+)N with 

It n<«o, and for each <x1,x2, ...> €X
N with x n € t^E^,... ,kn) for 

each n€N, the sum -Six converges. 

Webbed spaces (in French: espaces a r£seau) were introduced and 

studied by M. De Wilde [28} in the connection of the Closed Graph 

Theorem for linear operators (cf. also [l3j , p.408, espaces bomantj. 

Theorem 4.1. Player I has a winning strategy in G(x) iff X is 

a webbed space. 

It is to be observed that Theorem 4.1 is just a game-theoretic 

interpretation of the definition of webbed spaces. Let us note that 

a similar characterization can be given for webbed subspaces of a 

locally convex vector space. 

5. Analytic sets 

Let X be a T-j space. We define a game G(x) as follows. Player 

I chooses a sequence £-. = ̂ E(l,l) ,E(l,2),...) of subsets of X such 

that U S T = X. After that player II chooses a k.. € N. Assume that 

5n ,k1,...,F ,k have been chosen. Then player I chooses a sequence 

fn+1 = <E(n+l,l),E(n+l,2),...> of subsets of X such that U £ n + 1 = 

= E?n,kn). After that player II chooses a ̂ n+^€N. Player I wins the 

play <f1,klff2,k2f...> of G(x) iff f\{E(n,kn): n€N} = {x} for some 

x€X and for each open set G in X with G!>n{E(n,kn) : n€N} we have 

GDE(n,k ) for some n € N. 

Theorem 5.1. Player I has a winning strategy in G(x) iff X is 

the continuous image of N ($r is treated as the Tihonov product of 

of H0 copies of the discrete space N/. 

For the proof of Theorem 5.1 we refer to [27j . From Theorem 5*1 

immediately follows 

Theorem 5.2. Let X be a nonvoid separable metric space. Then 

player I has a winning strategy in G(x) iff X is analytic. 

Let us note that a similar characterization can be obtained 
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?s of 

compact closed-graph correspondences (cf. [^J > P»416). 

N for analytic sets being the images of N under upper semi-continuous 

6. Measurable functions 

Let f be a real-valued function defined on a set X and let £ 

be a ^--algebra of subsets of X. We define a game G(f,X,£) as fol­

lows. Player I chooses a countable partition £-. of X such that 

(f-jC*?. After that player II chooses a ---€£-)• Assume that € -pE-, ,..., 

£ ,E have been chosen. Then player I chooses a countable partition 

£ + 1 of E such that £ 1<-^£. After that player II chooses a --L+-. €" 

£ n + 1 . Player I wins the play ̂ f-^E-,,^^,.. *} of G(f,X,£) iff 

lim dn = 0, where dn = sup { J f^x^ -f (x^)\ - xi» x?^ En} *0T e a c h n ^ N* 

Theorem 6.1. Player I has a winning strategy in G(f,X,£) iff 

f is ̂ -measurable. 

Theorem 6.1 is an easy consequence of Theorem 6.2 below; the 

winning strategy can be recognized in the condition (d). 

Theorem 6.2. Let f be a real-valued function defined on a mea­

surable space <X,£-\ Then the following conditions are equivalent: 

(a) f is £-measurable. 

(b) There exists a countable subfamily CL of £ such that (f(A): A€<X} 

is a network in f(x) (i.e., for each y 6 f (x) and each open interval 

J containing y there exists a A € (I such that y€f(A)CJ . 

(c) There exists a countable subfamily (B of £ such that f is conti­

nuous with respect to the topology on X generated by(3. 

(d) There exists a sequence (f^C^'***^ o f countable partitions of X 

such that for each n € N we have: £ n c £ , £ n + 1 refines £ , and for 

each E € £ n , sup { | f (xj -f fx2> I : x^Xg €E}-£ 1/n. 

Let us note that the condition (d) of Theorem 6.2 is nothing 

else as the regularity of f relative to the P-system ̂ £-.1^2' •• ^ 

considered by J.DraveckJr (["7] and [8]). 

7« Metrizable spaces 

Let X be a regular space. We define a game G(x) as follows. 
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Player I chooses a locally finite family £-. of open sets in X such 

that UE-. = X. After that player II chooses a E-1 € £,. . Assume that 

-̂.jE-j,... ,fn,En have been chosen. Then player I chooses a locally fi­

nite family &n^ of open sets in X such that U£-n+1 = En- After that 

player II chooses a E + 1€£ +1. Player I wins the play <£1,E1,£2,E2, 

...> of G(X) iff either H(E n: n€N} = 0 or there exists a point 

x€X for which <E1,E^,...> is a local base. 

Theorem !•!• Player I has a winning strategy in G(x) iff X is 

metrizable. 

Theorem 7*1 is an immediate consequence of the following. 

Theorem 7*2. A regular space X is metrizable iff there exists 

a sequence ̂ (B-^,^, • • .̂  of locally finite open covers of X such that 

^n+1 ref*nes ^n for e a c h n € N > and if ^ Bx , B2 , # # #^ i s a 3 e cl u e n c e of> 

open sets in X such that B n + 1^B n€d? n for each n€N, then either 
H{Bn: n£N} = 0 or there exists a point x€X for which <B1,B2,...> 
is a local base. 

Theorem 7.2 is a slight modification of the Nagata-Smirnov 

Metrization Theorem (cf. [9]* p.196). Let us note that a similar cha­

racterization can be obtained for completely metrizable spaces, M-

-spaces (cf. [l7]), and for some other relative classes of spaces. 

8* P-spaces 

Let X be a space. We define a game G(x) as follows. Player I 

chooses an open set G-, in X. After that player II chooses a closed 

set F-, in X such that F-^CG^. Assume that G-. ,F-,,... >Gn,F have been 

chosen. Then player I chooses an open set G + 1 in X. After that 

player II chooses a closed set Fn+1 in X such that ̂ n-f^^Ut^1 

k-^n+l}. Player II wins the play <G1,F1,G2,F2,.. .> of G(X) iff 

either U{Gn- n€N} / X or U{Gn- n£N} = x = U { ^ n : n€N>. 

P-spaces were introduced by K.Morita ([16] and [l7]) for an 

intrinsic characterization of those normal (resp. paracompact) spa­

ces X whose product space X * Y is normal (resp. paracompact) for 

each metric space Y. 

Theorem 8.1. Player II has a winning strategy in G(X) iff X is 
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a p-space. 

Theorem 8.1 immediately follows from Theorem 8.2 below. 

Theorem 8.2. X is a P-space iff there exists a function F de­

fined on the set of ail finite sequences ^G,,...,G ) of open sets in 

X such that F(G1,...,Gn) is a closed set in X, F(G1,... ,Gn) C U{G k: 

kin}, and (JI^G-^,... ,G n): n € N } = X for each sequence <G1,G2>...> 

of open sets in X with U{G n- n£N} = X. 

For the proof of Theorem 8.2 we refer to [26], where a similar 

characterization was obtained for P(m)-spaces as well. 
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