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N SCNE TOPCLOCICAL CAXES
R. TELGARSKY

Wroctaw

The present contritution treats on some game-theoretic me-
thods in the general topology.

The term ,tonological games"was introduced by C.Eerge [2]

(cf. also [3]) to distinguish those positional games whose rules are
continuous (as multivelued functions). Here and also in [25], [26]
and [27] it is proposed to use the term ,topological gemes" without
that limitation of rules. The topological character of games consi-
dered here is determined bty topological objects and topological ope-
rations being involved in actions of pleyers snd in calculations of
plays’ results.

The first paper describing a tonolosical game, although no ga-
me theory notion is used, is due to W.3ierpinsti [24] (cf. Section 1
below). Topological gares with the transfinite length of plays were
used for the first time by A.V.Arhangelskil [1], however without
using notions of game theory as well. The most widespread Ynown topo-
logical games are the Banach-Mazur geme over the unit intervel ([22],
[231) and the binary game over the Cantor discontinuum ([4], [lﬂ s
(15, (18], [19], [20], [21], (29]).

Each one of eight games considered below is an infinite posi-
tional two-person win-lose geme with perfect information (the theory
of those games arose indevendently in Polerd ([2(], [21]) and in the
U.S.A. ([1]])) . There are two players, plaver I and player IT,
which alternetely choose certain otjects, say Al, El’ A2’ 82, ey
connected witk a given topological space (e.g., points, sutsets, co-
vers ). Player I chooses A1 and each choice is made with complete in-
formation about previous choices. The choice of A (Bn) is the nt?
move of player I (resp. player 11) and <A1’Bl’A2’E2"°'> is a play
of the game. The result of a play is either the win or the loss for
a player. A strategy of a player is a function which prescribes the
next move of him provided that a {finite) sequence of his opponent’s
moves is given. A strategv of a player is a winning one if, applying
that one, he wins each play. It turns out that a winning strategy of

a plaver descrites a topological property of en approximation tyne.
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1. Smooth sets

A family £ of subsets of a set Y is said to be a L-family if
(a) E€€ and E€X <Y implies X€E, and
(v) U{Xn: neN}e g implies Xnéf for some né€ N.

Examples of L-families: 1. & = {Ecy: card E 7?(,}, 2. £=
= {ECY: intrcle # O], where Y is a Polish space, and 3. €=
= {EcY: n*(E) >0}, where m is & Borel measure on Y with m(Y) = 1.

Let X be & subset of a space Y and let € be a L-femily of sub-
sets of Y. We define a game G(X,Y,E) as follows. Player I chooses &
sutset Dy of X. After that player II chooses & sutset E1 of D1 such
that E1€£ if D;€E and otherwise he chooses E; = O. Assume that
Dl’El""’Dn’En have been chosen. Then player I chooses a sutset
Dn+1 of En' After that player II chooses & subset En+1 of Dn+1 such
that En efir Dn+1€£ and otherwise hLe chooses E 41 = O. Player 1T
wins the play (Dl,El,Dz,Ez,...> of G(X,Y,£) iff (1{clyD : néN}CX.

The geme G(X,Y,£), where Y = R” and €= {EcY: card E >X,}was
described by W.Sierpinski [24] , however, he did not use any notion
of game theory. Let us note that the Banach-Mazur game was proposed
by S.Mazur in about 1928 (cf. [23), Chapter 6). The pioneer techni-
que of W.Sierpinski was recently extended by C.Dellacherie in [5])
and [6], but not involving notions of game theory. The notion of L-
family is due to C.Dellacherie ([6), Chapter I, D 13). In [5] and [6]
a strategy of player II corresponds to the notion of scraper (in
French: le rabotage) and the set X for which player II has a winning
strategy in G(X,Y,E) is said to be smooth (Y and € are fixed). The
theorem which follows is Jjust another variant of a theorem of C.Del-~
lacherie ([6] , Ch.I, Thm.40), but the proofs are different.

Theorem l.1. Let X be a Souslin set in Y, let € be a L-family
of subsets of Y, and let us assume that X€E. Then player II has a
winning strategy in G(X,Y,£€).

Proof. Let X be a Souslin set in Y such that X€E&, where € is
a L-family of subsets of Y. By Theorem 3.2 below there exists a se-
quence (81,22,...> of countable partitions of X such that £n+1 refi-
nes fn for each n €N and such that n{clYEn: néN}CX for each secue-
nce (EI,EZ,...) with En+1CEn€ £n’ where n €N. We define a strategy
s for player II as follows. Let n€N and let (Dl,...,Dn) te a sequen-
ce of subsets of X such that D19D23...'3Dn and Dkéi for each k£n.
Then Dn = U{DnnE: Eéén} and thus there exists a Enégn such that
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DnnEné‘E. We set s(Dy,...,D ) = D NE . If n€N and {Dy,.++,D > is
a sequence of sutsets of X such that DIDDZ‘D... DDn and Dn¢ ¢, then
we set s(Dy,...,D ) = 0. If (Dl,El,Dz,E2,...) is a play of G(X,Y,E)
such thet E = S(Dl""’Dn) for each né€N, then ﬂ{clx.En: n€N}CX.
Hence s is a winning strategy of player II.

Theorem 1.2. Let X be a sutset of an uncountatle Polish space Y
and let € = {ECY: card E >X,}. Then
(a) If player I has a winning strategy in G(X,Y,£), then Y-X con-
tains a copy of the Cantor discontinuum.
(b) If player II has a winning strategy in G(X,Y,£), then either X is
countable or it contains a copy of the Cantor discontinuum.

The proof of part (&) is similar to that one of (b), and part
(b) was proved by W.Sierpinski [24] .

A separable metric space which contains no copy of the Cantor
discontinuum is called totally imperfect ([14] , p.514). Assume that
2o =N, for some &. Then every uncountable Polish space Y contains a
set X which, together with its complement, is totally imperfect and
has the cardinality 2H°(cf. [14], p.514), and thus neither of players
hes a winning strategy in G(X,Y,£), where €= {EcY: card E >N}

2. Large sets

Let X te & space. We define a game G(X) as follows. Player I
chooses an open cover El of X with card 2152. After that player II
chooses a Elegl. Assume that <‘,1,E1,...,£1,1,En have been chosen. Then
player I chooses an open cover 5n+1 of X with card £n+1£2' After
that player II chooses a En+1€6n+1' Player II wins the play
(€1 ,E1,E53Epy .+« of G(X) iff U{E : neN} = x.

Theorem 2.1. Let X1 and X2 be spaces such that either X1 is a
closed sutset of X2 or Xy is & continuous image of Xy Then
(a) If player I has a winning strategy in G(Xl), then he has & win-
ning strategy in G(X?).
(v) 1 player II has a winning strategy in G(Xz), then he has a win-
ning strategy in G(Xl).

The proof is easy and thus it is omitted.
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According to the preceding theorem we may say that a space X
is large ( small) if player I (resp. player II) has a winning strate-
gy in a(x).

Theorem 2.2. Player I has a winning strategy in G(X) iff X con-
tains a closed sutset F which admits a continuous mep onto the Can-
tor discontinuum.

Hence, in particular, the closed unit interval and the Cantor
discontinuum are large spaces.

Proof. {=>) Let s be a winning strategy of player I in G(X).
we set s(p) = {E(O),E(l)}, where @ denotes the void sequence, and
s(E(el),...,E(el,...,en)) = {E(el,...,en,o),E(el,...,en,l)} for each
{eqyeeered E{O,l}'n and n €N, Further, we set
F = U{N{x-Ele,,...,e): nen}: Cejrey,...>€{0,1} Mana Fle ,...e )=
= F-E(el,...,en) for each <e1,...,en> e{O,l}n and n€N. Since
(x-E()) A (x-E(1)) = 0 and (X-Eley,...,e ,0))n(X-Eles,... e ,1)) = O
for each (e ,...,e D €{0,1}" and n €N, we have
F = n{U{F(el,...,en): (el,...,en)e{o,l}n}: n €N}. Hence F is clo-
sed in ¥X. Let us set f(x) = <e1’92""> if xén{F(el,...,en): né€n}.
It is easy to check that f is a continuous map from F onto {O,l}N.

(&) Let f be a continuous map from a closed subset F of X
onto {0,1} . we set Bleg,...,e;) = {{d;,dp,.. ) e{0,1}": <a;,...,4>
= (el,...,en)}, Efe ,...,en) = X-f'l(B(el,...,en)) end s(p) =
= {E(0),E(1) } ana S%E(el),...,E(el,...,en)) = {E(ey,...,e,,0),
E(el,...,en,l)} for each (el,...,en)e{o,l}n and n€N., It is easy to
verify that s is a winning strategy for player I.

By Tietze-Urysohn Extension Theorem (cf. 9], p.67) we get
from Theorem 2.2 following

Theorem 2.3. Let X be a normal space. Then player I has a win-
ning strategy in G(X) iff X admits & continuous map onto the closed
unit interval [0,1].

One can prove the following zero-dimensional variant of Tietze-
Urysohn Extension Theorem: Let f be a continuous map from a closed
subset F of a normal space X with dim X = O into the Cantor discon-
tinuum C. Then f admits a continuous extension f which maps X into C.

Hence and by Theorem 2.2 we have
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Theorem 2.4. Let X be & normel space with dim X = 0. Then
player I has a winning strategy in G(X) iff X admits & continuous map
onto the Cantor discontinuum.

It is easy to prove that each completely regular space X with
ind X D 0 admits & continuous map onto [0,1}. Thus by theorems 2.1
and 2.2 we have ’

Theorem 2.5. If X is completely regular and player II has a
winning strategy in G(X), then ind X £ 0.

Similarly, if X is a normal space and player II has & winning
strategy in G(X), then dim X £ 0.

Theorem 2.6. Let X be a subtset of the Cantor discontinuum C
such that C-X is totally imperfect. Then X admits a continuous map
onto C and thus player I has a winning strategy in G(X).

Proof. Let h be a homeomorphism from C onto C xC and let p be
the projection map given by p(s,t) = s, where {s,t) €C xC. We set
f(x) = pl(h(x)) for each x €X. Since (C*C)-h(X) is totally imperfect,
we have ({s} xC)nh(X) # O for each s €C. Hence £(X) = C.

Let us note that in Theorem 2.6 the space C can be replaced by
fo,1]. To prove that varient of Theorem 2.6 it is sufficient to re-
place h by a continuous map g from [0,1] onto [0,1] X [0,1].

Theorem 2.7. If X is a scattered Lindeldf regular space, then
player IT has a winning strategy in G(X).

The proof proceeds by the transfinite induction with respect to
o such that X\(“)= 0 in the same manner as the one of Theorem 9.3 in
[25] . Thus it is omitted.

Theorem 2.8. Let X be a metric separable space. Then player II
has a winning strategy in G(X) iff X is (at most) countable.

Proof. (=) Let X be a separable metric space and let s be a
winning strategy of player II in G(X). By Theorem 2.5 we have ind X =
= 0. Hence X can be considered as a subspace of the Cantor disconti-
nuum C. Now we apply an argument given in [12] (cf. also [4]). Let
B be the family of all clopen subsets B of C with O # B # C. Then
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card ® =X,. We may and do assume that player I, on his nth move,
chooses a B, €8 and after that player II chooses a E €{B,,C-B }. We
set X, n{s(B) B €8} and

U{n{s(B yev+sB,B)-5(By,...,B ): B€B}: {By,...,B Yea"}
for each n €EN. We claim that XCU{X : n€N}. Suppose there exists a
x €X with x§¢X for each n€N. Then there is a Bj€® with x#s(B ),
there is a B, € B with xf.'ss(Bl B,), and so on, i. e., there is a
(BI,B2,...)€6N with x¢U{s(Bl,...,Bn): n€N}. However that situa-
tion cannot occur because 8 is a winning strategy of player II. Now
we claim that card X £ X, for each n €N. Since B separates points of
X, it follows that each one of the sets N{s(B): B€@} and
n{s(Bl,...,Bn,B)—s(Bl,...,Bn). B€®B} contains at most one point.
Thus card X € N,.

(&) We set X = {xl,xz,...} and define a strategy s of player
IT as follows: s(il,...,in) is an element of £n containing X
Clearly, s is a winning strategy of player II.

As a corollary to thorems 2.3 and 2.8 we get

Theorem 2.9. Let X be a separable metric space. Then
(2) player I has a winning strategy in G(X) iff X admits a continuous
map onto [0,1], and
(b) player II has a winning strategy in G(X) iff card XEN .

As a corollary to theorems 2.1 and 2.9 we have
Theorem 2.10. ([12]). Let X be a discrete space. Then

(a) player I has a winning strategy in G(X) iff card X > 2"’, and
(v) player II has a winning strategy in G(X) iff card XEN,.

3. Souslin sets

Let X be a subset of a space Y. We define a game G(X,Y) as
follows. Player I chooses a countable partition 81 of X. After that
player II chooses a E,€ 21. Assume that £l,El,...,£n,En have been
chosen. Then player I chooses a countable partition £n+1 of E .
After that player II chooses a E ., € €n+1' Player I wins the play
€€),E,,&,,Ey, .00 of G(X,Y) iff N{clyE : n€N}CX.

A subset X of a space Y is said to be a Souslin set in Y (more
precisely: a F-Souslin set in Y) if there exists en indexed femily
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{F(kl,.,.,kn): (kl,...,kn) €N, n €N} of closed subsets of Y such
that X = (J{N{Flky,...,k): n€N}: <kp,k,,...> €'},

Theorem 3.1. Player I has & winning strategy in G(X,Y) iff
X is a Souslin set in Y.

Theorem 3.1 is an immediate consequence of Theorem 3.2.

Theorem 3.2. The following conditions are equivelent:
(a) X is a Souslin set in Y.
(b) There exists an indexed family {E(kl,...,kn): (kl,...,kn) eN",
n€N} of subsets of X such that U{E(k): k€N} = X,
UfE(k ..ok ,k): k€NY = Blky,...,k ) for each {ky,...,k > €NT,
n€N, and N{clyE(ky, ...,k ): nEN}CX for each {ky,kyy.esd en”,
(c) There exists a sequence (81,82,...> of countable partitions of X
such that & ., refines fn for each n €N, and ﬂ{cle-:n: n€N}CX for
each sequence {E,,E,,...» with E ,,CE € €, for each n€N.

For the proof of Theorem 3.2 we refer to [27]. Let us note
that for Souslin sets in compact Hausdorff spaces one can obtain a
game-theoretic characterization related to the technique of complete
sequences of covers (cf. [10], Section 9).

4. Webbed spaces

Let X be a locally convex vector space. We define a game c(x)
as follows. Player I chooses a sequence fl = {(E(1,1),E(1,2),...) of
absolutely convex subsets of X such that Uél absorbs X. After that
player II chooses a kle N. Assume that El,kl,...,fn,kn have been cho-
sen. Then player I chooses a sequence £n+1 = <E(n+l,1) ,E(n+1,2),...)
of absolutely convex subsets of X such that E(n+1,k)CE(n,kn) for
each k€ N and such that U£n+1 absorbs E(n,kn). After that player II
chooses a k., €N. Player I wins the play <81’k1'£2’k2"“> of G(X)
iff for each sequence (tl,tz,.--)é(R+)N with 2t <e© and each se-
quence <X;,Xy,... ex with xnetn-E(n,kn) for each n€N, the sum
an converges.

A locally convex vector space X is said to be a webbed space if
there exists an indexed family {E(kl,...,kn): <k1,...,kn) éNn, n€N}
of absolutely convex subsets of X such that
(a) U{E(x): kx €N} ebsorbs X,
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(v) UfE(xy, ...,k ) KEN}CE(k),...,k) and U{E(k),... ¥k ,k):
k €N} absorbs E(ky,...,k ) for each (kl,...,kn)éNn and n €N, and
(¢) for each Kky,k,,...) €', for each <ty g, 0> €(RT)Y with
Ztn<eo , and for each (xl,xz,...) exV with x, € tn-E(kl,...,kn) for
each n €N, the sum an converges.

Webbed spaces (in French: espaces & réseau) were introduced and
studied by M. De Wilde [28] in the connection of the Closed Graph
Theorem for linear operators (cf. also [13], p.408, espaces bornant).

Theorem 4.1. Player I has a winning strategy in G(X) iff X is
a webbed space.

It is to be observed that Theorem 4.1 is just a game-theoretic
interpretation of the definition of webbed spaces. Let us note that
a similar characterization can be given for webbed subspaces of a
locally convex vector space.

5. Analytic sets

Let X be a 'I‘1 space. We define a game G(X) as follows. Player
I chooses & sequence 21 = <E(1,1),E(1,2),...) of subsets of X such
that UE.l = X. After that player II chooses & kléN. Assume that
61,k1,...,€n,kn have been chosen. Then player I chooses a sequence
el = {E(n+1,1),E(n+1,2),...) of subsets of X such that U£n+l =
= E(n,kn). After that player II chooses a k +1€N. Flayer I wins the
play <€1,k1,52,k2,...> of G(X) iff f\{E(n,kn): n€N} = {x} for some
x €X and for each open set G in X with GDf\{E(n,kn): néN} we have
GDE(n,kn) for some n €N.

Theorem 5.1. Player I has a winning strategy in G(X) iff X is
the continuous image of NN (NN is treated as the Tihonov product of

of X, copies of the discrete space N).

For the proof of Theorem 5.1 we refer to [27] . From Theorem 5.1
immediately follows

Theorem 5.2. Let X be a nonvoid separable metric space. Then
player I has a winning strategy in G(X) iff X is analytic.

Let us note that a similar characterization can be obtained
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for analytic sets being the images of N under upper semi-continuous

compact closed-graph correspondences (cr. [10], p.416).

6. Measurable functions

Let f be a real-valued function defined on & set X end let &
be a @-algebra of subsets of X. We define a game G(f,X,S) as fol-
lows. Player I chooses a countable partition El of X such that
flcf. After that player II chooses a E; €£,. Assume that fl,El,...,
&,+E, have been chosen. Then player I chooses a countable partition
En+1 OF E, such that Em_lcf. After that player II chooses & E €
Ens1e Flayer I wins the play <61,E1,52,E2,...> of G(f,X,E) iff
lim dn = 0, where dn = sup{'f(xl) -f(xz)l: xl,xzéEn} for each né€N.

Theorem 6.1. Player I has a winning strategy in G(f,X,£) iff
f is £-measurable.

Theorem 6.1 is an easy consequence of Theorem 6.2 below; the
winning strategy can be recognized in the condition (d).

Theorem 6.2. Let f be a real-valued function defined on a mea-
surable space {X,£). Then the following conditions are equivalent:
(a) £ is E-measurable.

(b) There exists a countable subfamily A of £ such that {f(a): aea}
is a network in f£(X) (i.e., for each y € f(X) and each open interval
J containing y there exists a A €A such that y€f(A)CJ .

(c) There exists a countable subfamily B of £ such that f is conti-
nuous with respect to the topology on X generated by@.

(@) There exists a sequence {€1,€5,.+) of countable partitions of X
such that for each n€N we have: Encﬁ, £n+1 refines En, and for
each E€E , sup { I£(xy) -f(x2)| : X,X, €E}<€1/n.

Let us note that the condition (d) of Theorem 6.2 is nothing
else as the regularity of f relative to the P-system <£1,£2,...>
considered by J.Dravecky ([7] and [8]).

7. Metrizable spaces

Let X be a regular space. We define a game G(X) as follows.
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Player I chooses & locally finite family 51 of open sets in X such
that Uf,l = X. After that player II chooses & E,€E,. Assume that
El,El,...,En,En have been. chosen. Then player I chooses a locally fi-
nite family 5n+1 of open sets in X such that U€n+1 = En‘ After that
player II chooses & En+le£n+1‘ Player I wins the play <£1’E1’£2’E2’
.+.) of G(X) iff either M{E : n€N} = O or there exists a point

x €X for which <E1’E2""> is a local base.

Theorem 7.l. Player I has a winning strategy in G(X) iff X is
metrizable.

Theorem 7.1 is an immediate consequence of the following.

Theorem 7.2. A regular space X is metrizable iff there exists
a sequence (61,62,...> of locally finite open covers of X such that
@,,, refines & for each n €N, and if <Bl,82,...> is a sequence of
open sets in X such that Bn+1CBn668n for each n €N, then either
n{Bn: n€N} = O or there exists a point x €X for which <Bl’52’“‘>
is a local base.

Theorem 7.2 is a slight modification of the Nagata-Smirnov
Metrization Theorem (cf. [9], p.196). Let us note that a similar cha-
racterization can be obtained for completely metrizable spaces, M-
-spaces (cf.[l?]), and for some other relative classes of spaces.

8. P-spaces

Let X be a space. We define a game G(X) as follows. Player I
chooses an open set Gl in X. After that player II chooses a closed
set Fy in X such that F{CG,. Assume that Gl’Fl”"’Gn’Fn have been
chosen. Then player I chooses an open set Gn+1 in X. After that
player II chooses a closed set F ., in X such that Fm_lcU{Gk:
k<n+l}. Player II wins the play <G1’F1’G2’F2"“> of G(X) iff
either J{G,: n€N} # X or U{G: neN} = X = U{F_: n€N}.

P-spaces were introduced by K.Morita ([16] end [17]) for an
intrinsic characterization of those normal (resp. paracompact) spa-
ces X whose product space XxY is normal (resp. paracompact) for
each metric space Y.

Theorem 8.1. Player II has a winning strategy in G(X) iff X is
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a P-space.
Theorem 8.1 immediately follows from Theorem 8.2 below.

Theorem 8.2. X is a P-space iff there exists a function F de-
fined on the set of ull finite sequences (Gl,...,Gn) of open sets in
X such that F(Gy,...,G6;) is & closed set in I, F(Gl,...,Gn)c:\){Gk:
k<n}, and U{F(Gy,...,Cp): n€N} = X for each sequence {Gy,Gpyeeed
of open sets in X with L){Gn:rléN} = X.

For the proof of Theorem 8.2 we refer to [26], where a similar
characterization was obtained for P(m)-spaces as well.
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