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THE MARTIN COMPACTIFICATION 
IN AXIOMATIC POTENTIAL THEORY 

J. C. TAYLOR 

Montreal — Paris 

1. Introduction. Let B denote an open ball in R" (n j> 2) of radius J? and let S 
denote its boundary. The Poisson kernel K(x, y) for B is defined by the formula 

„, ^ R"~2 [R2 - Цx|21 

where aB is the (n - l)-dimensional surface area of S with xeB and y e S. 

It is well known that if/ is a continuous real-valued function on S the function 
Hf defined by 

Hf(x)=iк(x,y)f(y)dy. 

with dy Lebesgue measure on S, solves the classical Dirichlet problem for B with 
boundary value / (cf. Helms [19]). 

Since x -> K(x, y) is harmonic, for all yeS, it follows that for each positive 
Radon measure \i on S the function H^ defined by 

Я„(x)= (к(x,y)џ(ăy) 

is positive and harmonic. The converse is true (theorem of Herglotz) and even further 
the measure \i is uniquely defined by the corresponding harmonic function. Hence, 
there is an integral representation for the positive harmonic functions on B in terms 
of the functions K(., y)9 with yeS9 and the set Jt*(S) of positive Radon measures 
on S. 

In 1941 R. S. Martin showed that a similar integral representation holds for 
any bounded domain D in Rn [25]. Specifically, he proved the following result. 

Theorem (R. S. Martin). Let D c Rn (n ^ 2) be a bounded domain. Then there 
exists a metrizable compactification D of D with the following properties: 

(1) to each point y e A = J5 \ D there corresponds a non-zero positive harmonic 
function K(.9y) such that (x9 y) -* K(x9 y) is continuous on D x A; 
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(2) if H^ is defined by 

JJM(x) = $K(x,y)n(dy) 

with pLEJi+(A)J the correspondence pi -• H^ maps J%+(A) onto the cone Jf+(D) 
of positive harmonic functions on D; and 

(3) there is a Gd-set At a A such that the map fi ~> H^ is a bijection of 
{lieJi+(A) | ix(A \ Ax) = 0} onto Jf+(D). 

Definition. The compact metric space & is called the Martin compactification 
of D and the ideal boundary A = D \ D is called the Martin boundary of D. 
The G5~set Al is called the set of minimal points of A. 

The purpose of this paper is to discuss certain aspects of subsequent research 
dealing with a description of the Martin compactification and to mention some open 
problems. 

2. Axiomatic potential theory. Martin's original work has been extended to 
three different contexts: axiomatic potential theory; and probabilistic potential 
theory both discrete and non-discrete. The following is a very brief outline of Brelofs 
axiomatic theory of potential (cf. [4] 1960 and also [1] 1966, [11] 1971 for the 
more general theories). 

Let £ be a connected, locally connected, locally compact, non-compact space 
with a countable base. Denote by Jf a sheaf on E. 

Axiom 1. «?f is a sheaf of vector spaces of continuous real-valued functions on E. 

Definition 2.1. A relatively compact open set W a E will be said to be ^-regular 
if to eachfe ^(dW) there corresponds a unique function Hf e J^(W) such that: 

(1) fuHfe %(W); and 

(2) (f ^ 0) implies (Hf ^ 0). 

Axiom 2. E has a base of ^-regular sets. 

Axiom 3. Let W c E be open and connected. If (hn)n c J^(W) is increasing 
then either sup hn e J^(W) or it is identically equal to + oo. 

n 

Definition 2.2. A sheaf ^ o n £ that satisfies Axioms 1, 2 and 3 will be called 
a (Brelot) harmonic sheaf. 

To each regular set W there correspond the harmonic measures /xj, x e W, 
defined by 

Oif, cp> = Hf(x) , 
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where / = <p j dW and <p e #c(i5). It can be seen that the mapping x -» (fij9fy 
is Borel-measurable for any non-negative Borel function/. Consequently, the operator 
Hw is a kernel (cf. [27] for a definition) where 

Hwf(x) equals f(x) if x £ W and </iJ\/> 

if x e W, f ^ 0 Borel-measurable. 

Definition 2.3. A lower semi-continuous function « : £ - > ( —oo, +oo] is said 
to be (jf)-hy per harmonic (resp. (j^)-hyperharmonic on an open set U) if Hwu g u 
for each regular set W (resp. for each regular set W with W a U). A hyperharmonic 
function is said to be superharmonic if it is finite on a dense set. A continuous 
function h is said to be harmonic on an open set U if h and —h are both hyperhar
monic on U. A superharmonic function u is called a potential if h^u and ft har
monic (on E) implies ft ^ 0, and u = 0. 

Each non-negative superharmonic function w has a unique Riesz decomposition 
u = p + ft, where /? is a potential and ft is harmonic. 

The support of a hyperharmonic function u is defined to be the complement 
of the largest open set on which it is harmonic. 

Hypothesis I. There exists a positive potential. 
Assuming this hypothesis one can prove that for each yeE there exists a po

tential with support {y}. It is natural to ask if such potentials are unique, up to 
a constant. While this is not true in general (see Constantinescu and Cornea [10] 
1968 for a counter example) in a very large number of cases this is in fact so. 

Hypothesis II. (The hypothesis of proportionality.) For each y e E9 ifpt and p2 

are potentials with support {y} there exists X > 0 with px = Xpz. 

Definition 2.4. A lower semi-continuous function G : E x E -» [0, + oo] is 
called a Green function for 2? if 

(1) G is continuous off the diagonal; and 
(2) for each y e E9 x -• G(x9 y) is a potential of support {y}. 

In her thesis Mme Herv6 proved that Hypotheses I and II imply the existence 
of Green functions for Jf ([17] 1962, Proposition 18.1). 

3. Examples of harmonic sheaves. Let E be an open set in Rn (n ^ 2) and let Jf 
be the sheaf of #2-functions ft for which Lft = 0 where L has one of the following 
forms: 

(1) L = A (classical potential theory); 

WL-I^T^r + Zb^ + c 
ij oXidxj i dxt 
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where i) bi9 c and atJ are locally Lipschitz, and 
ii) (atJ) is a symmetric matrix whose associated quadratic form is positive 

definite [17] 1962; 

(3) L = £ — (Haij — ) w i th the atJ Lebesgue measurable, (atj) symmetric 
i dxt \ j dxjj 

and £ flyfify *z e(Z£?) f° r s o m e e > °> uniformly on £ [18] 1964. 
u i 

Then ^ is a harmonic sheaf that satisfies hypotheses I and II. 

Information on further refinements of the example (2) is given in the survey 
article [7] 1970, where Bony's important work [2] 1967 on determination of an 
elliptic operator by a harmonic sheaf is also discussed. 

If £ is a #2-manifold then any elliptic operator L on E that satisfies (2) or (3) 
locally defines a harmonic sheaf. In particular if £ is a Riemannian manifold, the 
Laplace-Beltrami operator defines a harmonic sheaf on E. 

Finally, the harmonic functions on a Riemann surface E form a harmonic 
sheaf on E. 

4. The Martin compactification. Let (Ka)aeI be a family of continuous functions 
Ka : E \ Da->R9DacE compact. Then, a very slight modification of arguments 
given by Constantinescu and Cornea in [9] 1963 shows that there exists a unique 
compactification i?of E with the following properties: 

(1) for each a, Ka extends continuously to E \ Da; and 
(2) the extended functions separate the points of £ \ E (see [31] 1970). 

This compactification will be said to be defined by (Ka)aeI (it is a Q-compact'fication 
in the terminology of [9]) and can be described in various equivalent ways (uniform 
structures, proximity spaces, etc.). 

Let x0 e E and let G be a Green function for Jt. Define K(x, y) to be 1 if JC = 
= x0 = y and to be G(x, y)\G(x0, y) otherwise. The Martin compactification of E 
determined by jtf is defined to be the compactification defined by the family (K*)xeE> 
where K*(y) = K(x, y). It is clearly independent of the choice of Green function 
in view of Hypothesis II and can be shown to be independent of x0 (with a suitable 
topology on the cone of positive superharmonic functions it can be seen to be the 
closure of the set of extreme points of a compact base for this cone). Further, it is 
metrizable as the argument given in [5] 1971 (p. 112) shows. 

In the case of the harmonic sheaf 3% defined by a suitable elliptic operator L, 
the Martin compactification for L defined by Shur in [29] 1962 coincides with the 
compactification defined by the sheaf. 

Let y G A = E \ E. Then there is a sequence (yn)n
 c E w i t h y = lim yn9 i.e., 

for each xeE 
lim K(x, yn) = Ky(x) 
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exists. If xt e E and Wis a connected open set containing x0 and xx the functions 
K(-> yn) a r e harmonic on IF for sufficiently large n. They all take value 1 at x0 and 
since Harnack type inequalities hold in this setting, the function Ky is locally a uniform 
limit of harmonic functions and hence harmonic. 

The function K is extended to E x E by using the functions Kr ye A and the 
desired integral representation follows by means of the arguments of Martin (c.f. [5] 
p. 113 for an exposition). Hence, Martin's theorem holds for any Brelot harmonic 
sheaf that satisfies Hypotheses I and II. 

5. The relationship between ffi and W. Let W c E be relatively compact and 
connected. The sheaf Jif on E induces a harmonic sheaf on W which satisfies Hypo
theses I and II whenever 2% does. Hence W has a Martin compactification W. If W 
is an open ball in Rn and Jf is the sheaf defined by Laplace's operator it follows 
from the results stated in the introduction that W = W (the closure of W). It is 
therefore natural to ask in the general case what relationship holds between J^and Wl 

In 1933 de la Valles Poussin [24] obtained a Poisson type integral representation 
for a domain W in R3 of finite connection bounded by a finite number of "sufficiently 
regular" surfaces (at each point of the boundary a tangent plane exists knd the angle 
0(xu x2) between the normals at xx and x2 tends to zero as xt — x2 tends to zero) 
and a finite number of closed sets of capacity zero. The boundary points are identified 
with harmonic functions and as in the case of an open ball there is a bijection between 
Jt+(dW) and Jf?+(W). When no exceptional sets of capacity zero exist in the 
boundary then Wis a Cl -domain and so I^= Why [20] 1970. It would be of interest 
to have a good modern exposition of this elegant paper [24]. For a very readable 
account of it and of Martin's work see Deny [12] 1947. 

In 1970 R. A. Hunt and R. L. Wheeden in [20] published a proof of the fact 
that W = IF (relative once again to Laplace's operator) if W is a bounded Lipschitz 
domain in Rn (n ^ 2). 

If IT is a simply connected plane domain with at least two boundary points 
the Riemann mapping theorem states that there is a conformal map <P : JF-»(|z| < 1). 
The definition of the prime ends of IF given by CarathSodory in [6] 1913 implies 
that they are the inverse images under <P of the traces on (|z| < 1) of the neighbour
hood filters in (|z| ^ 1) of the points of the circle (|z| = 1). Hence, the prime ends 
are the points of the Martin boundary for W. For W equal to the open 
square (max {|x|, \y\} < 1) minus the lines An9 where An = {(x, y) \ y ^ 0, x = 
= l -2 - B } it is well known from the theory of prime ends (cf. [6]) that l^and W 
are not comparable compactifications (i.e., there is no continuous map from one onto 
the other which is the identity map on W). 

If A c E is a closed set of capacity zero then E \ A is connected and dense in E. 
Since the cone of positive harmonic functions on E \ A can be identified with the 
cone of superharmonic functions on E whose supjport lies in A, it then follows that 

E \ A = E with Martin boundary equal to A u A, where A =- E \ E. Further, 
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each point of A is minimal. Consequently, if W = Wand A a Wis closed and of 

capacity zero then W \ A = W \ A. 
In the case of a general harmonic sheaf nothing is known about the relation 

between J^and W. For example, it is not known if £ has a base of relatively compact 
domains Wfot which W—W. More specifically, if L is an elliptic operator on an open 
set U c Rn (of the type that defines a Brelot sheaf) and if Wis even a very "regular" 
relatively compact domain with W cz U nothing is known about the relation between 
J?'and W. Clearly, if everything is "sufficiently regular" one expects to have W = W. 

The same question can be considered for PVa compact submanifold with bound
ary of a Riemannian manifold with interior W, the sheaf here being defined by the 
Laplace-Beltrami operator. Again one expects that W = W. Hopefully, a solution 
of the local problem will solve this global one. 

6. The existence of non-minimal points. In all the examples so far discussed 
A = Ax. Martin [25] constructed an example of a bounded domain W in R3 for 
which A =# Ax (it even satisfied the condition used by de la Valine Poussin in [24]). 
Ikegami [21] 1967 proved that in the case of the Laplace operator (in fact for the 
somewhat more general case of a Green space) that A #= Ax implies A \ Ax is 
infinite. Toda [32] 1967 then showed that it is even uncountable. These results have 
not been proved for a general harmonic sheaf. As a side comment it is noted that 
while in probabilistic potential theory the minimal points are the points to which 
the random particle almost surely converges as time goes to infinity, no probabilistic 
interpretation has been given of the non-minimal points. 

In [25], Martin asked whether in general Ax is dense in A. This question was 
resolved in striking fashion by Constantinescu and Cornea in [8] 1958. They showed 
that to each integer n S> 1 there corresponds a hyperbolic Riemann surface En 

whose Martin boundary is connected and contains exactly n minimal points. It would 
be interesting to know what part of the standard (n — l)-simplex corresponds to the 
Martin boundary of En. One can ask for what compact convex sets K do there exist 
Brelot sheaves such that the corresponding set Ax can be identified with $(l£). In 
probabilistic potential theory the following articles provide results in this direction, 
[28] 1966 and [34] 1960. 

These examples of Constantinescu and Cornea raise the question: is there 
a topological property of E which implies A = Ax or more generally Ax = Al Note 
that for simply connected plane domains A = Ax and that in the examples En the 
homology groups of En \ A, for any compact A c En9 are presumably infinitely 
generated. For example, if E is contractible to a point is A x = Al 

7. Entrance and exit boundaries. In [9] Constantinescu and Cornea proved that 
the Martin compactification of a hyperbolic Riemann surface E is the compactific-
ation defined by the family of continuous functions g of the form 

g = HvflHvl, 
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where / is continuous and bounded on E, CU is compact and outer regular and Hv 

is the kernel that solves the Dirichlet problem for 17. As a consequence it was proved 
in [9] that E ^ £, where £ is the Stoilow compactification of E (i.e., the one defined 
by those continuous bounded functions / that are constant on the components of the 
complement of some compact set A = A(f) cz E) and "2>M means that there is 
a continuous map from E onto E which is the identity on E. This result is equivalent 
to having a bijection between the connected components of A and the ends of E. 

While for a general sheaf H the above description of the Martin compactification 
is no longer valid, it is still true that E *> £ [31] 1970. In the general setting this is 
a consequence of the fact that if A cz E is compact then E \ A can be canonically 
embedded in the topological sum of the Martin compactifications of the connected 
components of E \ A. 

The family of functions defined at the beginning of this section defines a com
pactification, the entrance compactification of E [30] 1969 (by analogy with the 
probabilistic entrance compactification defined by Doob in [13] 1959). It is not 
known, for a Brelot sheaf satisfying Hypotheses I and II whether the entrance 
and the Martin (or exit) compactifications coincide. 

When the Geen function G defines an adjoint sheaf jf* which satisfies the 
hypothesis of proportionality (Hypothesis II) the entrance compactification of E 
is the Martin compactification of E determined by Jff* [30] 1969. If for a sufficiently 
regular elliptic operator L defined on a neighbourhood of a sufficiently regular 
relatively compact domain W cz Rn (n *> 2) it follows that W -= W, then in this 
case entrance and exit compactifications will coincide (the sheaf «#** will be defined 
by the formal adjoint L* of L). 

B. Walsh in [33] 1969 has defined the notion of a normal structure j£? associated 
with a Brelot sheaf 3tf. It is a family (NA)A of kernels indexed by a family of compact 
sets A whose interiors cover E such that the following conditions are satisfied: 

N t) / continuous implies JV̂  / continuous; 
N2) At cz A2 implies NAz <>NAl = NAl; and 
N3) / bounded Borel implies NA f is harmonic on CA. 

A normal structure JS? defines a subsheaf Jf * of #t by requiring NAh == h,VAcz CU 
if he J^^(U) and so regulates the "behaviour at infinity" of the harmonic functions. 

To each normal structure one can associate an entrance (and exit or Martin) 
compactification. Presumably, there are probabilistic interpretations of these com
pactifications. 

Dynkin in [16] 1965 considered an abstract type of "boundary condition" 
which may have some relation to the notion of a normal structure. 

8. Stability of the compactification. The Martin compactification of a locally 
compact space E with countable base depends a priori on the Brelot sheaf Jf. In [31] 
1970 the question of stability was considered and the following result proved. 
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Let ^ i and ^f 2 be two Brelot sheaves on a locally compact space such that 
both of them satisfy Hypotheses I and II. If there exists a compact set A c E such 
that the sheaves agree on E \ A then the corresponding Martin compactifications 
coincide and the corresponding sets of minimal points coincide. 

For an elliptic operator L it would be of interest to know what perturbation 
of the coefficients, other than an "arbitrary" one on a compact set, leaves the Martin 
compactification invariant. 

The stability question is not trivial as the following example shows. Consider E 
an open ball B of radius 1 in R3 minus the ray A equal to (x = y = 0, z = 0). 
Since A has capacity zero the Martin compactification of E corresponding to Laplace's 
operator is B and the Martin boundary is dB u A. By analogy with the prime ends 
of a slit disk it is natural to try to construct prime ends for E that ramify A, re
placing each point except (0, 0, 0) by a circle. This can be done by using a suitable 
elliptic operator. Specifically, let L be the operator E obtained by transporting 
Laplace's operator on X to E by means of a diffeomorphism, where X is the open 
ball B minus the cone (x2 + y2 -= z2, z ^ 0). The Martin boundary of X is homeo-
morphic to a 2-sphere (by [20]) and so the Martin compactification of E determined 
by L ramifies A as desired. Hence this compactification differs from the one defined 
by Laplace's operator. 

This example serves also to emphasize a point made by other authors. Namely, 
the theory of prime ends is really a study of the Martin boundary. Furthermore, 
the work done by Kaufmann (cf. [23] 1930) and later Mazmkiewicz [26] 1945 
generalizing the theory of prime ends to higher dimensions defined objects which 
seem to be less maniable than the Martin compactification. Brelot in [3] 1946 showed 
(for the Laplacian) that in general Martin's and Mazurkiewicz' compactifications 
are not comparable. It could be that Mazurkiewicz' compactification can always 
be obtained by using a suitable sheaf. 

9. The description of the boundary associated with an elliptic operator L. 
According to Dynkin in [15] 1963 "the set of minimal nonnegative solutions of the 
elliptic differential equation Lf = 0 has received little attention and provides many 
interesting unsolved problems. We will state two such problems. 

The first problem is: under what restrictions on the differential operator L can 
be the set of minimal functions be provided with the structure of a smooth manifold 
such that Ky(x) is a smooth function of y and x (y e A)7 

The second problem concerns the connections between the geometry of a com
plete Riemannian manifold and the Martin boundary of this manifold", in particular 
the relation of the dimension of the boundary to the dimension of the manifold. 

Dynkin himself in [14] 1961 and Karpelevich in [22] 1963 have shown that 
for certain homogeneous spaces of non-positive curvature the set of minimal functions 
can be explicitly described and has dimension one less than that of the manifold. 

If an open Riemannian manifold E is isometrically embedded onto the interior 
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of a compact Riemannian manifold with boundary then it is to be expected that, 
under certain conditions, this boundary is the Martin boundary of E. In other words, 
the Martin boundary should be the "natural" boundary to add to such a manifold. 
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