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VERY UNLATTICELIKE ORDERED SPACES 

E. H. KRONHEIMER 

London 

All partial orderings < ("strictly precedes") are to satisfy p<q<p=>p = qi 
the converse implication may, but need not, hold — indeed a point which strictly 
precedes itself will be called singular. The reflexive relation ^ ("precedes") is 
associated with < in the usual way (p g q iff p < q or p -= q); and we write 

L(q) = {x\x<q}, L[Q] = U L(q) . 

A non-void subset D of a partially ordered set is directed (resp. strictly directed) 
if, given two points in D9 there exists a point in D succeeding (resp. strictly succeeding) 
both; D is a strict ideal if it is strictly directed and contains all the predecessors 
of each of its points. Call L[Q] the set generated by Q: then every strictly directed 
set generates a strict ideal, and every strict ideal generates itself. Any set of the form 
L(q) is called a principal strict ideal. 

Borrowing a term from Michael [2], we call a partially ordered set a cushion 
if it satisfies any of the following equivalent conditions: 

(a) Every point has a strict predecessor; and9 whenever pi9 p2 < r9 there 
exists q satisfying pl9 p2 < q < r. 

(b) Every directed subset generates a strict ideal. 
(c) Every principal strict ideal is a strict ideal. 

We equip each cushion with the topology determined by the base {<p, ?]}p<€, 
where <p, q\ = {x | p < x ^ q}. The singular points of a cushion are then its 
isolated points, and it is Hausdorff if and only if p = q whenever L(p) — L(q). 
A subset S of the cushion X is called a subcushion of X if S (with the restricted 
ordering) is itself a cushion whose topology coincides with its topology as a subspace 
of X. A function / between cushions is called a cushion map if it is continuous and 
p < q implies f(p) < f(q). 

Example 1. Let £ be a normal T -̂space. (Somewhat weaker separation axioms 
are in fact sufficient.) Let cE denote the collection of its open subsets other than 0 and 
E9 ordered by putting U < 7 iff U" <=. V. Then cE is a Hausdorff cushion which 
is non-singular if and only if E is connected. If E9 F are normal 7\-spaces 
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and 9 : E -» F is a closed continuous surjection, then cO :cF -> cJB, where c0(W) = 
= 0-^FF], is a cushion map. 

Example 2. Let R" denote the non-positive real numbers and M be a pseudo-
metric space. Let kM denote the set M x R~, ordered by putting (ml9 rt) < (ml9 r2) 
iff d(ml9 m2) <r2 — rx. Then kM is a non-singular cushion which is Hausdorff 
if and only if M is Hausdorff (i.e., metric). If M, N are pseudometric spaces and the 
function <p : M -+ N satisfies d(q>(m1)9 q>(m2)) < X d(ml9 m2) for some fixed positive 
number X9 then the function kxq>: kM -* kN9 where kx cp(m9 r) == (cp(m)9 Xr)9 is 
a cushion map. 

A cushion in which every strict ideal is principal is called complete. Complete 
cushions have some pleasant properties. Let us, for instance, say that a net (sd)deD 

(on the directed set D) in a partially ordered space is increasing if d ^ e implies 
sd ^ se. Then a cushion X is complete (resp. Hausdorff) if and only if every increasing 
net in X has at least (resp. at most) one limit point. Again: every closedsubcushion 
of a complete cushion is complete, and every complete subcushion of a Hausdorff 
cushion is closed. The results we shall establish here are two more specific ones. 

Theorem 1. The cushion cE is complete if and only if the topological space E 
is compact. 

Proof. Assume first that JB is compact, and let 0> be an ideal in cE; then P* = 
= U P is open and non-void. Suppose Q is a non-void open set such that Q~~ cz P*. 

Since 0> covers Q~~9 so does some finite subcollection {Pl9..., Pm} of 3P. Since ^ 
is directed, some member of 0> contains all the Pt and hence contains Q~. It follows 
that Q e &. Since E §§ 0>9 this argument (with Q = F) shows that P* 4= E; so P* e cE. 
It also shows that L(P*) c 0>. On the other hand, if P e 0>9 then P < P' e & for 
some P'9 so that P" c P' c P*: therefore PeL(P*). It follows that 0> == L(P*), 
and hence that cE is complete. 

To prove the converse, assume E has an open cover <?U with no finite refine
ment. Let "K denote the collection of all non-void sets expressible as finite unions 
of members of L\tff\. Then "T is a directed subset of cE which fails to generate 
a principal strict ideal; for if LfV*] = L(W)9 where We cE9 then (since f is actually 
strictly directed) each member of f is a subset of W9 contradicting the fact that TT 
covers E. 

Theorem 2. The cushion kM is complete if and only if the pseudometric 
space M is complete. 

Proof. Suppose M is a complete pseudometric space and P is a strict ideal 
in kM. Let 

r* = sup {r | (x, r) e P for some x e M} , 
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and choose x09 xi9... in Af such that (xn9 r* — 2"")eP for each n. Then (xn) is 
a Cauchy sequence; and P = L(x*, r*), where x* is a limit of (x„). 

Conversely, suppose that kM is a complete cushion and (yn) is a Cauchy sequence. 
Define 

5„= -2 sup d(yn9yn+k). 

The set {(j;0, s0)9 (yl9 st)9...} is directed and therefore generates a strict ideal: call 
this L(q). Then q must be of the form (y9 0), and j; must be a limit of (yn). 

If X is a complete Hausdorff cushion a n d / : X - > X a cushion map satisfying 
a < f(a) for some a, then / h a s a fixed point. (To construct it, put a0 -= a9 an+t =-
= f(an). If the directed set {a0, a , , . . .} generates L(fr), then / (6) = 6.) Theorem 2 
shows that this result includes the Banach fixed-point theorem: for if <p : Af -» M 
satisfies ^ ( m i ) , <p(m2)) < A d(ml9 m2)9 where 2 < 1, and if m is any point of M, 
then (m, r) strictly precedes feA <p(m9 r) in the cushion kM for all sufficiently large — r; 
and if fcA<p has a fixed point, so has (p. (It may be noted that, working with reflexive 
orderings, one obtains, instead of propositions about the (complete) cushion kM9 

closely analogous propositions about (Dedekind a-complete) ordered sets. See [1].) 
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