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SOME OPEN QUESTIONS IN INFINITE-DIMENSIONAL 
TOPOLOGY 

R. D. ANDERSON 

Baton Rouge 

Since the Second Prague Symposium five years ago, there have been many worth­
while results in infinite-dimensional point set topology. Open embedding theorems 
for manifolds modeled on Hilbert space, J2, or on any of many other linear spaces 
have been established and such manifolds have been topologically classified by homo-
topy type. Various useful c-compact structures for such manifolds as well as for the 
Hilbert cube, Q9 and for Hilbert cube manifolds have been identified and studied. 
General homeomorphism extension theorems have been proved. And many product 
and factor theorems have been established and used. As reported in Mardesid's 
paper in these Proceedings, Chapman has recently established the equivalence of the 
concept of shape of compacta with the existence of homeomorphisms of certain 
subsets of the Hilbert cube, thus enabling the homeomorphism theory of Q to be used 
in settling questions of shape. Brief summaries of known results in various directions 
are included in [3], in [16] and in the introduction to [5]. 

Three working sessions identifying and listing open problems in infinite-di­
mensional topology have been held in Ithaca (January, 1969), in Baton Rouge 
(December, 1969) and in Oberwolfach (September, 1970). Based on problem lists 
prepared at these sessions, an extensive list of open problems [5] has been published 
by (and is available from) the Mathematisch Centrum, Amsterdam. 

The purpose of the present paper is to identify and discuss one general and five 
special areas of open questions which appear both interesting and promising for future 
research. Of necessity, we omit many intriguing questions, e.g. questions about 
bundle maps over J2-manifolds suggested by Wong's results about bundles over 
polyhedra cited in his paper in these Proceedings [18]. See [5] for a much more 
extensive list of open problems. First we give a few definitions and some notation. 

In this paper, all spaces will be separable metric. Hilbert space, J2, is the space 
of all square-summable sequences of reals with the norm topology, i.e., J2 =- {(x,) | xt 

is real and £*,? < oo} with d((x,)9 (y)) =- VE(X* ~ .Vi)2- T h e Hilbert cube, Q, 
is defined as fj Jj where Jy = [— 1,1] and s c Q is defined as s == Yltf where 

j>0 j>0 

I°j = (—1,1). An E-manifold, i.e., manifold modeled on a (homogeneous) space E9 

is a space admitting a cover by open sets homeomorphic to open subsets of E. For 
a compactum M, H(M) is the space of homeomorphisms of M onto itself with the 
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metric d(hu h2) = sup d(hx(x), h2(x)). The symbol " s " denotes "is homeomorphic 
xeM 

to". A set K in a space X is a Z-set in X if for each non-empty homotopically trivial 
open set U cz X, [7 \ K is non-empty and homotopically trivial. A cr-Z-set is a 
countable union of Z-sets. 

For Yj c X! and Y2 c: X2, the pair (Xu Yt) ^ (X2, Y2) if there exists a homeo-
morphism h of Xa onto X2 such that /?(Yi) = Y2. If -X"i and Yx are L-manifolds and 
Yt is a closed subset of Xl9 we call (Xl9 Yt) a manifold pair. 

A Q-factor is a space X such that X x Q ^ Q. 
The two dominant "building blocks" m infinite-dimensional topology are the 

complete but nowhere locally compact, /2, and the compact Q. Since it is known, 
[1], that l2 ^ s we may regard Q as a compactification of l2. An "almost true" 
meta-conjecture states that if a separable metric space is not obviously different 
from 12 (or Q) then it must be homeomorphic to 12 (or Q). The general question 
is to find broader and more useful characterizations of 12 and Q. Indeed while many 
useful characterizations of l2 and Q are known (we list several below), most of the 
specific questions which follow can be regarded as further attempts to identify 
(properties of) l2 and Q or to recognize 12 or Q as spaces arising in contexts other 
than the usual ones. The following theorems are among the basic characterization 
and representation theorems for 12 and Q. 

Q — 1. Every compact convex infinite-dimensional subset of l2 (or of any linear 
metric space) is homeomorphic to Q, [12] and [13]. 

Q — 2. Any countable infinite product of non-degenerate Q-factors is homeo­
morphic to Q (and, for example, all compact contractible polyhedra or cell-complexes 
are Q-factors), [15] and [16]. 

Q — 3. Any contractible compactum which is locally Q is Q, [7]. 

l2 — 1. Every separable infinite-dimensional Banach (or Frechet) space is 
homeomorphic to l2 (or to s), [ l ] and [11]. 

l2 — 2. Any product of 12 by a Q-factor or by a Q-factor slash any cr-Z-set of 
it is homeomorphic to 12. 

l2 — 3. Any contractible separable metric space which is locally 12 is /2, [10]. 

l2 — 4. Any complement of a a-Z-set in l2 is homeomorphic to 12 (and, for 
example, every compactum in 12 is a Z-set in /2), [1] and [2]. 

l2 — 5. For any two compact polyhedra K and L having no isolated points, 
the space of maps of K into L is homeomorphic to 12 provided L is contractible, [9]. 

Problems on Spaces of Homeomorphisms 

Perhaps the most far-reaching open question in the area of infinite-dimensional 
topology is the following: 
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Question. For M any compact M-manifoId, is H(M) an l2-manifoldl 

An affirmative answer would permit the application or the powerful infinite-
dimensional theory to questions about homeomorphisms of finite-dimensional 
manifolds. Many researchers in the area consider it very probable that the answer 
is affirmative. The affirmative answer is known (and is easy to prove) for M one-
dimensional. It is also known by Geoghegan, [9], that H(M) x l2 ^ H(M), a pro­
perty that gives a partial coordinate structure to H(M) and a property that is known 
to be shared by all /2-manifolds. For n ^ 2, one approach to the problem of whether 
H(M) is an /2-manifold is to attempt (1) to show that H(M) is an ANR and (2) to 
show that if H(M) is an ANR, then H(M) is an /2-manifold. For n = 2, Luke and 
Mason [14] have shown that H(M) is an ANR but their argument is delicate and 
depends on special properties of the plane. It does not appear to generalize easily. 

Other approaches to the problem have been tried but generally have led to 
formulations which are no more intuitively evident and perhaps no easier than the 
original problem. For example, one may try to identify a space of maps or embeddings 
which contains the space of homeomorphisms as a suitable dense subset or is con­
tained in such space as a suitable dense subset. 

Problems on Q-manifolds 

A second major problem is the topological classification of Q-manifolds, i.e., 
manifolds modeled on the Hilbert cube. 

Question. Are all Q-manifolds characterized by proper homotopy type! 
(Here "proper homotopy type" is defined in the same way as homotopy type but 
with all maps required to be proper.) 

It is not even known whether all compact Q-manifolds are characterized by 
homotopy type (which for compacta is equivalent to proper homotopy type). However, 
by omitting compacta of various shapes from an endslice of Q, it is easy to exhibit 
continuumwise many Q-manifolds which are contractible and are thus of the same 
homotopy type but for which no two are of the same proper homotopy type. 

It is interesting to note that the intuitively easier (and necessarily locally compact) 
Q-manifolds are not yet classified with respect to homeomorphism type whereas 
the obviously nowhere locally compact /2-manifolds are homeomorphically clas­
sified by homotopy type. Perhaps the reason for this anomaly is that the local "holes" 
in l2 permit many more homeomorphisms to exist and to be exhibited thus permitting 
many more spaces to be observed to be homeomorphic to each other (see Z2—4 
above, for example). 

In the proof by Henderson [10] that /2-manifolds are characterized by homotopy 
type, a vital step was the open embedding theorem, namely that any /2-manifold 
may be embedded as an open subset of l2 thus yielding a single coordinate structure 
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for the manifold. It is immediate that for a circle C, Q x C cannot be openly embed­
ded in Q (since the boundary of the image of Q x C cannot be empty). Therefore, 
given a Q-manifold, M, we cannot guarantee an open embedding in Q. An affirmative 
answer to the following question would guarantee a (partial) coordinate structure 
for M and thus provide a possible substitute for the open embedding theorem. 
A subset of Q which contains an open set and is the product of closed non-degenerate 
subintervals of the coordinate intervals of Q is called a basic closed set in Q. A col­
lection is star-finite if each element intersects at most finitely many elements of the 
collection. 

Question. For any Q-manifold M, does there exist an embedding f of M into Q 
such thatf(M) is the union of the elements of a star-finite collection of basic closed 
sets of Ql 

Perhaps the best two existing theorems about Q-manifolds are due to Chapman, 
[7], who proved (1) for any Q-manifold, M9 M x [0, 1) can be openly embedded 
in Q and (2) for any two Q-manifolds, Mx and M2, Mx x [0, 1) £. M2 x [0, 1) 
iff Mj x [0, 1) and M2 x [0, 1) are of the same homotopy type. (Here [0, 1) denotes 
the half-open interval.) The [0,1) factor kills the "proper" distinctions made by 
proper homotopy type for Q-manifolds. 

Problems on Manifold Pairs 

There are a number of interesting questions on manifold pairs which are open 
even for Z2-manifolds. If in the Z2-manifold pair (M, K), K is a Z-set in M then K 
plays the role of an abstract boundary of M since for any peK9 there is an open 
embedding h of l2 x [0,1) into M such that p e h(l2 x {0}) and K n h(l2 x [0,1))-= 
= h(l2 x {0}). And, conversely, a closed abstract boundary must be a Z-set. 

Question. Let (M, K) be an l2-manifold pair with K a Z-set in M. Under what 
conditions can M be embedded in l2 such that K is the topological boundary under 
the embedding! 

It should be remarked that for any two Z2-manifolds Mx and M2, there are 
open embeddings hx and h2 of Mx and M2 in l2 such that CI hx(Mx)9 CI h2(M2)9 

CI hx(Mx) n CI h2(M2) are Z2-manifolds, l2 = CI hx(Mx) u CI h2(M2)9 and hx(Mx) 
and h2(M2) are disjoint. Thus weird embeddings of manifold pairs in Z2 are possible. 

In the Z2-manifold pair (M, K)9 K is said to be of finite local deficiency n at 
peK if there is an open embedding h of Z2 x (-1,1)" into M such that pel2 x {0}" 
and K n h(l2 x (-1,1)") = h(l2 x {0}"). 

Question. Given the l2-manifold pair (M, K) with K of local deficiency n at 
every point of K except possibly at the points of a subset Kf of K which is a Z-set 
both in M and in K. Is K of local deficiency n at every point! 
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For n =f= 2 this question is open even for K' compact or consisting of a single 
point. For n = 2, Kuiper has given a counterexample using knots where K' can be 
a single point (or a finite cell). The answer is known to be affirmative for the analagous 
questions for n = oo or for n = 0 (using the abstract boundary [0,1) definition for 
n = 0) and indeed by the Z-set theory, the cases for n = oo and n = 0 are known 
to be different formulations of the same question. 

Problems on Q-factors 

In his paper in these Proceedings, West has reviewed the status of the impressive 
recent research on Q-factors, i.e., spaces X such that X x Q ^ Q. 

Question. Characterize the Q-factors. 

Since it is clear that every Q-factor must be a compact absolute retract, we would 
have a characterization of g-factors if we could answer the following question 
affirmatively. 

Question. Is every compact AR a Q-factor! 

The results cited in West's paper give many partial results and thus characterize 
Q-factors for certain classes of compacta, e.g., a polyhedron or a cell-complex 
is a Q-factor iff it is contractible. 

For the general case of compact AR's, it is not intuitively clear what answer 
should be expected, e.g., there are compact AR's which are not local AR's, indeed, 
by Borsuk, [6], there is an AR, M, and a point peM such that no open set con­
taining p lies in an AR which is a proper subcompactum of M. If there does exist 
a compact AR which is not a Q-factor, then a solution of the Q-factor characterization 
problem might lead to interesting new classes of compacta. 

Problems on Upper Semi-Continuous Decompositions of Q 

A compactum K in Q is point-like if Q \ K ^ Q \ {pt}. As discussed in 
Mardesic's paper in these Proceedings, Chapman, [8], has proved that for any two 
Z-sets Kt and K2 in Q, Q \ Kx ^ Q \ K2 iff Kx and K2 have the same shape 
(as defined by Borsuk). Thus a Z-set in Q is point-like iff it has the shape of a point. 
However, compacta in Q may be point-like even though they are not Z-sets and 
there exist wild arcs in Q, i.e., arcs which are not point-like. In Euclidean spaces, 
point-like upper semi-continuous decompositions have been extensively studied 
and many interesting examples and theorems are known. Frequently a condition 
that the elements, e.g., arcs, are "tame" replaces the more general "point-like". 
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It seems likely that comparable studies for Q would include the hypothesis that the 
elements be Z-sets of trivial shape since homeomorphic Z-sets in Q are necessarily 
equivalently embedded and, for example, all compacta in s or in Q \ s are Z-sets. 
Indeed any point-like decomposition of s is a point-like Z-set decomposition. 

Let G be an upper semi-continuous decomposition of Q into Z-sets of trivial 
shape with hyperspace X; equivalently, let ft be a map of Q onto X such that G 
is the collection of point-inverses under h and the elements of G are point-like Z-sets. 
Let H be the collection of non-degenerate elements of G. Let H* denote the union 
of the elements of H. 

Question. Under what conditions can we conclude that X = Ql 

It seems likely that there exists a "dogbone" example in Q, i.e., an upper semi-
continuous decomposition of Q into points and Z-set arcs such that h(H*) is a topo­
logical Cantor set and such that X £ Q. A possible candidate for such an example 
is to consider two disjoint Wong-type [17] wild Cantor sets Ct and C2 in Q and a 
continuous collection of arcs joining the points of Ct with the points of C2 such that 
each arc lies except possibly for its endpoints in s (and thus is a Z-set). Let this 
collection of arcs be the collection H of all non-degenerate elements of G. Then, 
noting some special properties of Wong's construction, it seems unlikely that the 
elements of H can be shrunk to points in Q, i.e., that the hyperspace of G is homeo­
morphic to Q. 

Three special cases of the general question appear interesting. 

(1) If H* lies in a Z-set (or equivalently in an endslice of Q), can we conclude 
that X s Q? 

(2) If H* lies in a countable union of Z-sets (or, equivalently, in Q \ s), can 
we conclude that X £. Q? 

(3) If H* lies in s, can we conclude that X £ Q1 

A substantial partial result for (1) is known whereas no significant additional 
results are known for (2) and (3). It should be noted that for the candidate for the 
dogbone example above, H* cannot lie topologically in s since then Wong's "wild'* 
Cantor sets would be "tame". 

The result known for (1) is the following: 

Theorem. If H* is finite-dimensional9 then X £ Q (and h(H*) lies in a Z-set 
toZ)[4]. 

The finite-dimensionality is probably an unnecessary hypothesis but the known 
proof uses the condition strongly. Notice that if for a dogbone construction with H* 
zero-dimensional and the dogbone in a Z-set, then the theorem implies that Q £ X. 
An immediate corollary of the theorem and of Chapman's characterization of shape 
is the following: 
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Corollary. For any compactum A and map f of A onto a compactum B such 
that the image under f of the union of the non-degenerate point-inverses is finite-
dimensional and for each b e B9f~*(b) has trivial shape, then shape A = shape B. 

A result like this corollary has reportedly recently been obtained independently 
by Koslowski and by Sher. The argument for the corollary involves (1) embedding A 
in a Z-set (or endslice) in Q, (2) employing the theorem for the U.S.C. decomposition 
which consists of the given U.S.C. decomposition of (the image of) A and the set 
of individual points not in (the image of) A, and then (3) employing Chapman's 
characterization since the decomposition map carries Q onto Q and Q \ A homeo-
morphically onto Q \ B. If the finite dimensionality condition can be omitted from 
the theorem, then it also can be omitted from the corollary. 
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