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A NOTE ON RUBIN'S EXAMPLE OF DOWKER SPACE 

P. SIMON 

Praha 

One assumption on a topological space occurs very frequently in mathematics — 
the property of being normal and countably paracompact. E.g. in such a space every 
Baire measure can be extended into a Borel measure [3]. In normal and countably 
paracompact space realcompactness can be described without (explicit or implicit) 
use of the notion of zero-set [1]. 

Last year Mrs. M. E. Rudin gave an example of a normal Hausdorff space Y9 

which is not countably paracompact ([4], [5], [6]). It seemed quite natural to study 
some other properties of the space Y in order to show the importance of the as
sumption of countable paracompactness. 

Let us recall the following definitions from [1] and [2]. 
A topological space will be called almost realcompact, iff, whenever si is 

a maximal centered collection of open sets such that {A | A e •«/} has the countable 
intersection property (abbr. CIP), then f){A | A e s/} is non-void. A topological 
space will be called closed complete, iff, whenever sf is a maximal centered collection 
of closed sets with CIP, then f)s/ is non-void. A topological space will be called 
Baire-Borel complete, if every maximal centered collection of zero sets 2£ with CIP 
has non-void intersection whenever there exists some maximal centered collection 
of Borel sets 31 with CIP such that & -=> g. 

Theorem 1. The space Y is neither almost realcompact nor realcompact. 

Theorem 2. The space Y is not Baire-Borel complete. 

Theorem 3. There exists maximal centered collection £ with CIP, consisting 
of zero-sets in Y, which cannot be extended to maximal centered collection of closed 
sets with CIP. 

Theorem 4. The space Yis closed complete. 
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