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ON SOME CONVERGENCE CLOSURES GENERATED 
BY FUNCTIONS 

V. KOUTNiK 

Praha 

0. In this note we shall consider several convergences defined on a given closure 
space and investigate relations between corresponding convergence closures and 
their modifications. 

Let L be a set. Let £ be a set of pairs ({xn}, x) where xneL, neN, and xeL 
satisfying the following axioms 

(jSf0) If ({*„}, x) e 2, ({xn}, y)e2 then x = y. 
(jS?x) If xn = x, ne N, then ({xn}, x)e2. 

(j§?2) If ({xn},x)e2 and {nj is any subsequence of {n}, then ({xtti},x)e2. 

Then 2 is called a convergence on L. For each A c L let XA = {x | x e L, 3{x„}, 
x„e.4, neJV, 9 ({x„}, x) e £}. Then (L, X) is a Ti-closure space. It is denoted by 
(L, 2, X) and called a convergence space [4], Note that in general X2A 4= AAL and 
hence a convergence space may not be a topological space. To each convergence 2 
there corresponds convergence 2* inducing the same convergence closure and satis
fying the Urysohn axiom 

(j§?3) If each subsequence {*„.} of a sequence {xn} contains a subsequence 
{xnij} converging to a point x, then the sequence {xn} itself converges to x. 

Let (L, 2, X) be a convergence space. The finest topology coarser than X is called 
a topological modification of X and denoted by A®1. Recall that a convergence space 
(L, £, A) is called a Frechet space if A051 = A, i.e., if (L, X) is a topological space. 
A topological space (P, u) is called a sequential space if there exists a convergence 
closure p. for P such that nm = u, i.e., if M is a topological modification of some 
convergence closure. If (P, u) is a closure space we shall denote by C(u) x) the set 
of all continuous real-valued functions on (P, u). 

A convergence space (L, 2, X) is called sequentially regular [4] if for each 
00 

point x e L and each sequence {xn} of points of L such that xeL — X\J (xn) there 
is a function / e C(^) such that {/(*„)} does not converge to f(x). B=sl 

1 ) We write simply C(u) instead of C((JP, u)) because we shall consider different closures 
for the same given set P. 
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Let (L, £, X) be a convergence space such that C(X) separates the points of L. 
The finest sequentially regular convergence closure for L coarser than X is called 
a sequentially regular modification of X and denoted by X [3]. The finest completely 
regular topology for L coarser than X is called a completely regular modification 
of X and denoted by X [3]. The following relations hold 

X < X < Xm < X, 

x<xm <X, 
X = x . 

1. Let (P, M) be a closure space and suppose that C(u) separates the points of P. 
Clearly (P, u) is a separated space. 

Consider the following convergences on P: 

S$: ({*„}, x)e Ĵ if for each neighborhood U of x we have xneU for nearly 
all neN9 

Vc(Uy ({*«}> *) e ^c(„) if {/(XII)} converges to f(x) for each / e C(u). 

Denote n and 7rc(ll) the corresponding convergence closures. S$ is the usual 
convergence on P. The convergence space (P, ^J, it) was called a convergence space 
associated with (P, w) in [3] and n is called a sequential modification of u in [1]. 
The convergence ^pC(ll) was introduced by J. Novak in [5] who pointed out that there 
are interesting relations between the closures u9 n9 nC(u) and their modifications. 
Let us define still another convergence 

$c<«>: ({*»}> *) e P̂cdt) -f {/(*,.)} converges to f(x) for each / e C(n). 

Denote nC(n) the corresponding convergence closure. We shall show in Example 1 
that generally C(7c) -# C(u). 

Lemma 1. n < 7rC(jt) < TTC(II). 

Proof. Let ({xn}9 x) e ^p. By definition of C(7c) and S$c(n) we have ({xn}9 x) e tyC(ny 
Since n < u we have C(u) c C(7c) and hence ({*„}, x) e ^PC(tt). 

Proposition 1. The convergence spaces (P, *PC(1t),nC{n)) and (P, 5pC(ll), 7rC(ll)) 
are sequentially regular. 

Proof. The assertion follows immediately from the definition of sequential 
regularity and from definitions of ^PC(w) and ^PC(|#). 

In view of Corollary 3 in [3] we have 

Corollary 1. The following are equivalent 

( a ) nC(n) — ftciuy 
(b) 7lC(n) -= 7tC(tt). 

(C) *C(n) = Kc(Uy 



V. KOUTNfK 251 

The question arises whether 7rc(B) = 7rC(M) does not always hold. The following 
example shows that we may have 7rc(n) 4= 7rC(M). 

Example 1. Let P = [0,1]. For x * 0 let Un = P n (x - l/n, x + l/n) 
be the usual local base at x and let the local base at 0 consist of sets U„tS = {0} u 
KJ ((0,l/n) — S) where neN and |S| g tt0. Denote M the corresponding topology. 
Clearly (P, $C(M), 7rC(M)) is the interval [0,1] with the usual topology. On the other 
hand 0 is 7r-isolated and therefore also 7rC(..r)-isolated. Hence nC(n) 4= 7rC(M). Note that 
both spaces (P, <pc(rt), nC(n)) and (P, ^PC(ll), nC(u)) are Frechet spaces. 

Proposition 2. If C(n) = C(w) then itC(n) = 7rC(u). 

Proof. C(7r) = C(u) implies that S$C(n) = <pC(l(). 

Corollary 2. If (P, w) is a convergence or a sequential space then nC(n) = 7TC(M). 

The condition in Proposition 2 is not necessary as the following example shows. 
00 00 

Example 2. Let P = U \J (xmn) u (x0). The points xmn are isolated and the 
m -=l n-=-l oo oo 

local base at x0 consists of sets Ukt, = U \J (xmn) u (x0) where k e N and r 
m=k n-r{m) 

is any mapping of N into itself. Denote u the corresponding topology. The space 
(P, «) is normal. The spaces (P, % n)9 (P, «pc(JC), nc(n))9 and (P, <PC(I|), TTC(M)) are all 
discrete and hence nc(n) = 7rC(M) while C(7r) 4= C(u). 

Proposition 3. / / ({xn}9 x)eS$ whenever {f(xn)} converges to f(x) for each 
f e C(u) then nC(n) = TTC(M). 

Proof. The condition implies $PC(M) c: S$ and the assertion follows by Lemma 1. 

Corollary 3. / / (P, u) is completely regular then nC(n) = 7rC(M). 

Again the condition in Proposition 3 is not necessary as the following example 
shows. 

Example 3. Let P = [0,1]. For x=t=0 let Un = P n (x - l/n, x + l/n) 
be the usual local base at x and let the local base at 0 consist of sets Vn = [0, l/n) — 

00 

— (J (l/m). Denote u the corresponding topology. We have ({l/m}, 0) £ S# while 
m = l 

{/(l/m)} converges to/(0) for each/e C(u). However, (P, 11) is a Frechet space and 
hence nC(n) = nc(u) by Corollary 2. 

Problem 1. What is the necessary and sufficient condition for the equality 
ttc(*) = 7rC(M)? 

2. Now let us characterize the convergence closures 7rc(w) and 7rC(M). 
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Theorem 1. nC(n) = ft. 

Proof. By Lemma 1 and Proposition 1 nC(n) is a sequentially regular conver
gence closure coarser than n. On the other hand let X be a sequentially regular con
vergence closure for P coarser than n. To complete the proof we must show that 
Kc(n) < A. Let 4̂ c= P and x e rtC(n)A. Then there is a sequence {xn} of points of A 
which ^}c(7t)-converges to x. Hence {f(xn)} converges to f(x) for each feC(n). 
Since % < X it follows that {g(xn)} converges to g(x) for each g e C(X). Because X 
is sequentially regular {xn} £*-eonverges to x by Lemma 2 in [3]. Therefore x e XA. 

Let (P, u) be a closure space and let w be the weak topology for P [2]. We shall 
denote by (P, *pw? nw) the convergence space associated with (P, w), i.e., nw is the 
sequential modification of w. 

Theorem 2. nC(u) = 7rw. 

Proof. If ({x„}, x) e tyC(u) then {f(xw)} converges to f(x) for each feC(u) 
and hence for each w-neighborhood U of x we have xneU for nearly all n e N. 
Therefore ({x„}, x) e %w. On the other hand if ({><„}, y) e $ w then clearly (f(y„)} 
converges to f(y) for eachfG C(II) so that ({yn}, y) e «pC(ll). 

Since (P, w) is a completely regular space it follows that if v is any of the closures 
w> n> ̂ cc*)* ftc(W) or their modifications then we have n < v < w. 

3. Finally let us consider the relations between the convergence closures 7t„ 
nc(ny Kc(u) and the closure u. 

If (P, u) is just a closure space then the only statement we can make is the obvious 
n < u. 

If (P, u) is a topological space then clearly n < n*01 < u. However, both nC(u) ^ 
^ u (Example 2) and u ^ 7rC(tt) (Example 3) may occur. The same holds for nC(n). 

Finally, if (P, u) is a completely regular space, then ftC(u) < u. It follows from 
Lemma 6 and Theorem 6 in [3] that ftc(u) = u if and only if C(n) = C(u). 
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