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ON HOMEOMORPHISMS 
OF oo-DIMENSIONAL BUNDLES 

R. Y. T. WONG 

Santa Barbara 

We announce here several generalizations of results in [On homeomorphisms 
of infinite-dimensional bundles I, II, and III] to not necessarily separable locally 
trivial fibre bundles ^ = (£, p, B) over polyhedron base space B with fibre a para-
compact manifold M modeled on some Fr&het space F homeomorphic to F°°, the 
countable infinite product of F by copies of itself. (Starting with Theorem 2 we will 
let M and (£, p, B) denote respectively such manifolds and bundles.) The following 
is our main lemma. 

Theorem 1 [1]. Let £ = (£, p, B) be a fibre bundle over (Hausdorff) space B 
with fibre F a metric absolute retract. Let A c £ be a closed set such that for each 
be B, the inclusion j : p~x(b) \ (An p~1(b)) -» P~x(b) is a homotopical equivalence. 
Suppose (K, L) is a locally finite simplicial pair and f a map of \K\ into B, then 
each lifting ft off\ \L\ into E\A (that is, fx: \L\ -* £ \ A such that pft=f\ \L\) 
can be extended to a lifting f* off into E \ A. 

A closed subset At of a space X is a Z-set if Interior (A) = 0 and for each non
empty homotopically trivial open subset U of X, U \ A remains homotopically 
trivial. By virtue of Theorem 1 we prove 

Theorem 2. Let Kbea closed set in the total space M x Bof the product bundle 
(M x B,p,B) over polyhedron B satisfying that for each beB, K n p~x(b) is 
a Z-set in p~x(b). Let % denote any open cover of M x B. Then there is a fibre-
preserving (that is, each p~1(b) being mapped into itself by ft) homotopy F = {/,} 
of M x B into itself such that f0 = identity, cl (ft(M x B)) n K = 0 and F is 
limited by <% (that is, each F({x] x [0,1]) c U for some U e <%). 

The case where B = {point} was announced earlier by D. Henderson. (Incident
ally, our proof may be different from his.) 

Hereafter all maps / of any A c £ into £ will be fibre-preserving maps, that is, 
pf(x) = p(x) for any x e £. We also let Kl9 K2,... denote closed subsets of £ such 
that for any b e B, Kt n p~\b) is a Z-set in p"\b). 

Theorem 3. Letf be a homeomorphism of Kx onto K2. Then f can be extended 
to a homeomorphism J of E provided that f is homotopic to the identity on Kt* 
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Furthermore, if the homotopy is limited by some open cover °U ofE, we may choose J 
to be isotopic to the identity and the isotopy be limited by St(4) (^). 

(We define St (<%) to be the open cover of E consisting of all sets V such that 
for some UeW, V = \J{We<%:WnU 4= 0}.) 

Theorem 4. E is homeomorphic to E \ \J Kt. Furthermore, if we let q> denote 

the collection of all such homeomorphisms and if °U is any open cover of E, we may 
choose fe q> to be isotopic to the identity and the isotopy be limited by 01. 

Using the same technique as in [4] we prove 

Theorem 5. Let (M x An, p, An) be a product bundle over n-simplex An and 
f: M x Am -> M x An be a map such that f \ M x dAn is a homeomorphism of 
M x dAn. Then f\ M x dAn can be extended to a homeomorphism F of M x Am. 
Furthermore, if n = 1 and the homotopy {ft = f\ M x {t}} is limited by some open 
cover °tt of M, we may choose F to be limited by St(10) (<%). 

Corollary. Any two homeomorphisms of M are isotopic if and only if they are 
homotopic. 

(This result was also announced by T. A. Chapman.) 
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