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ON HOMOLOGY THEORY OF NON-CLOSED SETS 

G. CHOGOSHVILI 

Tbilisi 

1. Direct systems of compact groups. In homology theory of non-closed sets the 
approximation of sets by their compact subsets or by their neighbourhoods is of 
decisive importance. Such approximations lead, in particular, to direct systems of 
compact groups. The definition of the limit of such systems given below would seem to 
have proved of some use in homology theory of non-compact spaces [2b, c; 3; 6c, 
d , f ] . 

Let {Aa9 nap} be a direct system of compact groups Aa with homomorphisms 

nafi '- Aa ~+ Ap . 

Let Ba be the character-group of Aa and apa : Bp -+ Ba a homomorphism, satisfying 
—a 0 

the permanence relation 
(aa, a0abp) = (napaa, bp) , aa e Aa , bpeBp. 

Then {Ba, apa} is an inverse system of discrete groups, and {Aa, nap} and {Ba, apa} are 
dually paired to the group K of real numbers mod 1. Let B be the limit-group of 
{Ba, apa} with discrete topology, and A' the usual algebraic limit-group of {Aa, naP}. 
Then the groups A' and B are paired to K under a multiplication defined as follows: 

(a, b) = (aa, ba), where aa e a e A', bae b e B . 

Let A0 be the annihilator of B in A'. We use the induced pairing of the factor-group 
A'jA0 and the group B to introduce a topology in A'jA0 as follows: for any finite 
subset F of B and any nucleus Vof K a nucleus U of A'jA0 is defined as a set of ele
ments a of A'/A0 satisfying the condition (a, F) e V. We call the group A'jA0 in this 
topology the general limit-group of {Aa, naP}, and the compact completion A of 
A'/A0, which exists and is unique, the limit-group of {Aa, naP}\ 

A = Urn {Aa9 naf)} . 

The group A'IA0 may be topologically imbedded in the character-group of B as an 
everywhere dense subgroup of it and, therefore, A and B are dual: A | B. 

Now we can introduce a compact topology in the direct sum £ / l a of compact 
groups Aa. To do this, it is sufficient to consider £\4a as the limit in the above sense 
of the direct system of all groups A'a with inclusion homomorphisms, where A'a is the 
sum of a finite subsystem of the system {Aa}. 
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Conversely, we can first define the compact sum ]TAa of the compact groups Aa, 
and then the limit of the system {Aa, na(i}. To do this, we consider the topology of the 
usual sum £ A a which satisfies the following conditions: a) the inclusion homo-
morphism 

la : Aa —• /_JAa 

is continuous for every a; b) every homomorphism / of £ A a in any compact 
group C is continuous, if the homomorphisms fia are continuous; c) in this 
topology £ A a has a compact completion. Such a topology of £ A a exists and 
is unique. The compact completion of £ A a will be called the direct sum of compact 
groups Aa and denoted by J^A^ Now, the factor group ]TAa/A0, where A0 is the 
closure of the subgroup generated by the elements aa — na^aa, is the limit 

l is iA«> n^) • 
2. Projective and spectral groups of complexes and spaces. Let {Ka, <} be 

a directed system of all finite closed subcomplexes Ka of a complex K, ordered by the 
inclusion 

a < /? o Ka cz Kfi . 

The groups of r-chains of Ka over a discrete or compact group of coefficients X, with 
the homomorphisms /a/?* induced by the inclusion maps 

lafi '' Ka —> K^ , 

form a directed system of groups 

(1) {Cr(Kx, X), iafit} . 

On the basis of (1), we construct homology groups of K of two kinds: projective and 
spectral. Projective homology groups are obtained if we first take the limit of the 
system (1) and then apply the homological functor, or, in notation, 

Hr lim {Cr(Ka, X), ittP*} , 

the limit being understood in the sense of § 1. Here, when X is compact, the boundary 
operator is first defined for the general limit-group and then extended by continuity 
to the limit-group. Spectral homology groups are obtained if, on the contrary, we 
first apply the homological functor and then take the limit; in notation, 

lim {HAKa9 X), ia^} . 

Using the inverse system of cochain groups of Ka over a discrete or compact 
group of coefficients Y 

(2) {C'(Ka, Y), i*,} 

we obtain, similarly, the projective and spectral cohomology groups of K. 
If X and Yare dual, then the projective [spectral] homology group of K over X 

and the projective [spectral] cohomology group of K over Y are dual not only for 
a discrete K, but also for a compact X. 
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From the theorem on commutativity of limit operator and homology functor,1) 
now a proposition of homological algebra, it follows that projective and spectral 
homology groups are isomorphic for a discrete group of coefficients X, while pro
jective and spectral cohomology groups are isomorphic for a compact group of 
coefficients Y. Examples show that these isomorphisms are not valid when X is 
compact and Y discrete. 

Making use of the spectral and projective groups of complexes we construct the 
corresponding (i. e. spectral and projective) homology and cohomology groups of 
spaces of various types, viz., singular, continuous, Cech, Vietoris, etc. In this 
way we obtain, on the one hand, the usual singular, Vietoris, etc groups, every one 
of these groups being of either the spectral or the projective kind. On the other hand, 
we obtain new groups which are opposite in kind to the usual groups just mentioned. 
Moreover, the above definitions, especially that of the limit of direct system of com
pact groups, makes it possible to construct homology and cohomology groups of 
spaces not only over a discrete, but over a compact group of coefficients as well. As 
is known, these latter have not all been previously defined (see, e. g., [8], pp. 166, 
184, 185, 188, 223, 233 and [10], p. 393). 

Taking the singular complex of a space and its projective and spectral groups, we 
obtain, apart from the usual singular groups of the space — which are groups of the 
projective kind — also the spectral singular groups, as well as the projective singular 
homology groups with compact coefficients. 

The continuous homology groups are discrete groups of the spectral kind, but 
the projective continuous groups may also be constructed, as well as the compact 
spectral homology groups. 

Spectral and projective groups of nerves of arbitrary coverings form direct and 
inverse systems of compact or discrete groups, whose limit groups (in the sense of § 1) 
are Cech groups of a space; in particular, we obtain spectral and projective homo
logy groups with compact coefficients. 

Groups of vietorisian complexes of coverings2) with homomorphisms, induced by 
inclusion maps, form inverse and direct systems, whose limit groups are spectral and 
projective Vietoris groups of a space over discrete or compact coefficients. 

The relations between the spectral and projective groups, stated above for 
complexes, extend to the groups of spaces in any homology theory — singular, Vieto
ris, etc The relations between various theories, established previously for cases when 
projective and spectral groups coincide (for Cech and Vietoris theories in [7b], for 
singular and continuous theories in [9], for singular and Cech theories in [13], for 
Cech and Alexander-Kolmogoroff theories in [6a, e] and [12]), are valid for other 

1) Proved by P. S. ALEXANDROFF [2a] for sequences and generalised by the present author 
[6a] for arbitrary systems; cf. [4, 12]. 

2 ) By the vietorisian of a covering we mean a complex, whose vertices are points of the 
space, a subset of vertices forming a simplex, if and only if it is contained in an element of the co
vering. 
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cases likewise, provided the groups in question are of the same kind — projective or 
spectral. 

Of the various applications which these groups have already received in topology 
and variational calculus [1; 2b, c; 3; 6b —g; 14; 15], we shall consider here the duality 
laws, and not only in view of their classical character, but in view also of the distin
guished role, EDUARD CECH'S investigations play in this field. 

3. Duality theorems for spectral groups. Let Sn be an n-sphere, A an arbitrary 
set of S", Fa a compact subset of A and Ga the complement of Fa. Let, further, K be 
a triangulation of Ga, Ka a finite subcomplex of K, and La the triangulated complement 
in Sn of Ka. The Alexander-Pontrjagin theorem asserts the duality 

(3) Hr(La,X)\Hn_r_l(Ka,Y), 

where HS(M, Z) denotes the s-dimensional homology group of M over a group of 
coefficients Z, and X and Yare dual, X | Y In its original form it was necessary to 
suppose in this theorem I to be a discrete group. But interpreting Hr(La, X) as a 
spectral group, we can extend this theorem to the case when X is compact. On car
rying out this extension we are faced, for the first time, with the necessity of applying 
the homological approximations of a set by its compact subsets and, simultaneously, 
the approximations of its complement by the complements of the compact subsets 
just mentioned. The approximation of La by its finite closed subcomplexes LaT gives 
precisely the spectral group Hr(La, X) which is the limit of the system 

(4) {Hr(Lax, X), i„J , 

where ixa* are the homomorphisms induced by the inclusions ixa : LaT -> Laa, x < a. 

The homology groups H.J_r_1(KaT, Y) of the complements 

KaT = S" \ LaT 

with the homomorphisms J~T*, induced by the inclusions jax : Kaa --> KaT, form an 
inverse system of groups 

(5) {Hn.r.x(Kax, Y),jat*}. 

Since, by Alexander-Pontrjagin duality theorem in its original form, i. e. when Y 
is discrete, the groups 

Hr(Lax,X) and Hn,r^(Kat, Y) 

are dual, systems (4) and (5) are dually paired. Hence the limit-groups of (4) and (5), 
if the limits are taken in the sense of § 1, are dual. But the limit-group of (5) is iso
morphic to the limit-group of the inverse system 

(6) {/-n_r_.(Are,y),c_-,}, 

where N^ are nerves (or vietorisian complexes) of external open coverings 17* of Ka 

(i. e. [/* is a system of open sets of Sn, whose union contains Ka) and co^ are the cor
responding homomorphisms of the homology groups. But the external coverings can 
be substituted in (6) by the internal coverings of Ka (i. e. by the coverings of Ka by its 



G. CHOGOSHVILI 127 

open subsets), in virtue of the following lemma of Cech (for proofs of different forms 
of this lemma under various conditions cf. [5; 11; 14; 15; 6b]): 

Cech's lemma. For any external covering U and any internal covering u of A 
there exist isomorphic (i. e. with isomorphic nerves) external and internal coverings 
Vand, respectively, v of A, which are refinements of U and u, respectively, and sa
tisfy the condition v = Vn A. 

Applying this lemma, in the case when A is a polyhedron, to system (6) we 
conclude at once that the limit-group of (6) is isomorphic to the homology group 
Hn_r_i(Ka, Y) of Ka. Thus, the Alexander-Pontrjagin duality (3) holds also when X 
is a compact group. 

Let us consider now the cohomology groups Hr(La, Y) and I/n-r-1(Ka, X); 
understanding Hr(La, Y) as the spectral group of La, we see that these cohomology 
groups are character groups of the corresponding homology groups under discussion, 
and we obtain the diagram: 

(7) Hr(La> X) K/f Hw-r-i(^q? y) 
K) Hr(La,Y) ^ H*-'-\K„X)' 

A diagram of this kind has the following sense. It is a quadruple of graded 
groups which are connected by group multiplications and homomorphisms, denoted 
by | and —> respectively, and which are represented as the vertices of a square. The 
components of each pair of these graded groups are in a certain 1 — 1-corresponden-
ce, which will be called the correspondence of the diagram. We shall consider not 
only the usual correspondence, when the difference of dimensions of the correspond
ing components is constant (degree of correspondence), but also a correspondence, 
such that the sum of dimensions of corresponding components is constant; this con
stant we call the o-degree. 

The corresponding components of any pair of neighbouring groups are paired 
to K. We shall consider here the case, when one of the neighbouring groups is discrete, 
the other compact, and the multiplication is distributive, continuous and orthogonal. 
The corresponding components of any pair of opposite (non-neighbouring) groups are 
isomorphic. The multiplications and isomorphisms are compatible in the sense that: 
(a) the composition of any two correspondences of the diagram is a correspondence of 
the diagram; (b) x and y being corresponding elements of an arbitrary pair of isomor
phic groups, and t an element of either of the two other groups of the diagram, 
(t, x) = (t, y). Diagram (7) has all these properties; its correspondences are of degree 0 
and of (j-degree n — 1. 

By a directed system of diagrams {®a} we mean a set of diagrams ^ indexed by 
a directed system {a} and satisfying the following conditions: 

(a) for each a, p the quadruples of &a and 3)^ are bijective; 
(b) for each a < /? the groups corresponding to each other by the bijection just 

mentioned are connected by homomorphisms in such a manner, that they form an 
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inverse or direct system of groups; in the sequel these systems will be called systems 
generated by {®a}; 

(c) neighbouring systems of groups generated by {S^a} have opposite directions 
and are paired to K; 

(d) the homomorphisms of opposite systems of groups, generated by {^a}, com
mute with the isomorphisms of the diagrams <3a and S)p. 

The limit diagram Q) of the system {3)a}, 

9 = lim {@a} , 

is a quadruple, consisting of the limit groups of the systems generated by {Q)a}. These 
limit groups are in the same categories as the groups of corresponding systems, the 
definition of limit being as in §1. The correspondanoes, multiplications, and iso
morphisms of Q) are defined from those of 3)a. For instance, if p = {pa} and q = 
— {ga} a r e elements of limit-groups, then the multiplication (p, q) is defined as 
(p<x> g«)> the latter being independent of the choice of a. Now, the compatibility and 
other properties of diagrams mentioned above can be proved to be valid for Q>. Thus, 
lim {£?a} is a diagram. Degrees of correspondences of & coincide with those of @)a. 

Diagram (7) is a diagram Q)a in the sense just described. If a < /?, i. e. Ka c_ K^, 
the groups of S>a and S)fi are connected by the homomorphisms la/5.*, i*a,jafi*9jpa, 
induced by the inclusions 

K„ —> KД 

and 

Һ 
It can be verified that the set of all 3)a with homomorphisms iaii^ etc, is a directed 
system of diagrams {@a}. This system homologically approximates to the set Ga = K 
by its finite closed subcomplexes and to the set Fa by its neighbourhoods. 

The limit diagram Q)a = \3)a} consists of the spectral homology and cohomology 
groups of Gfl, //„_,._x(Gfl, Y) and Hn~r~1(Ga, X) respectively, and of the external 
groups Hr(Fa, X) and Hr(Fa, Y) of Fa. But applying the lemma of Cech, in the case 
when A is a compact set Fa, we conclude as above, that the latter groups may be 
considered as usual, i. e. internal, tech (or Vietoris) groups of Fa. Thus we obtain 
the diagram &a: 

( 8 ) Hr(Fa,X) ^ Hn_r^(Ga,Y) 

Hr(F„Y) ^ Hn-r-\Ga,X)' 

representing the correlations between the spectral groups of a compact —open pair 
of complementary sets (Ffl, Ga). 

Now let us consider such diagrams for each a, i. e. for each compact subset Fa of 
A, and let us connect them for each a < h, i. e. for each Fa c= Fb, by homomorphisms 
induced by the inclusions 

tab : Fa -* Fb a n d j b a :Gb-+ Ga. 
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The set of all diagrams 3a and homomorphisms just mentioned form a directed system 
of diagrams, giving the internal homological approximation of A by its compact sub
sets Fa and, simultaneously, the external approximation of B by complements Ga of 
Fa. The limit diagram 

3 = lim {3a} 
consists of the homology and cohomology groups of A with compact carriers, 
Hr(A, X) and Hr(A, Y) respectively, and of the external groups Hn_r_x(B, Y) and 
Hn~r~1(BJ X) of B. But the lemma of Cech for arbitrary A guarantees that the latter 
groups can be understood not only as limit-groups of the system consisting of groups 
of neighbourhoods or of groups based on external coverings, but as usual Cech (or 
Vietoris) groups of B. Here it must be taken into account that these groups must be 
based not on finite coverings of B, as originally defined for the Cech groups [5], but on 
all open coverings of B [2b; 6c, d; 7a; 11]. These groups may be considered also as 
Vietoris groups [7b] and, when A is a neighbourhood retract (in particular, when A is 
an infinite polyhedron [6b]) as singular groups (see [13], cf. [6b]). Thus we obtain 
the diagram 3 
/9\ Hr(A, X) K/f Hn_r_t(B, Y) 

Hr(A, Y) *y* Hn~r-l(B, X) ' 

which gives the various forms of the Alexander-Pontrjagin duality theorem for an 
arbitrary pair of sets (A, B). Certain of these forms and their particular cases (theorems 
for external groups, for the discrete group of coefficients X, for the compact group of 
coefficients X, etc) have been obtained by P. S. ALEXANDROFF, N. A. BERIKASHVILI, 

A. N. KOLMOGOROFF, K. A. SITNIKOV and G. S. CHOGOSHVILI [2b, c; 3; 6b, c, d, f; 14]. 

The diagram 3, especially the compatibility of 3, and the way it was obtained above, 
show the interrelations of these forms with each other, and prove that all of them 
can be obtained by one and the same method, the chief tools being: the simultaneous 
approximations to the sets by compact subsets and their complements, the theory of 
group systems, and Cech's lemma. 

The duality of the first line of 3 — the earliest to have been obtained — gives the 
Alexander-Pontrjagin theorem in its classical form. Moreover, it is the form from 
which it is easiest to obtain the duality theorems for non-closed sets obtained previ
ously, namely Eilenberg's theorems relating to cases: (a) when r = 0 and n is arbitrary, 
and (b) when n = 2 and A is a homeomorphic image of a linear set (cf. [2b; 6b]). 

The proof of the isomorphism of external and internal groups, given by P. S. 
Alexandroff [2], differs from that sketched above. Alexandroff's proof ma
kes use of the canonical triangulations and transformations, which proved to be 
very useful in the generalisation of duality theorems for projective groups. 

4. Duality theorems for projective groups. The relations which, in this case, cons
titute the starting point are represented by the following diagram 3a: 

/4Q\ Hr(Fa, X) ^ Hn-r(Ga> Y) 
K ] W(Fa,Y)^ Hn~r(Ga,X) 
9 Symposium 
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Here Hr(Fa, X) and Hr(Fa, Y) are r-dimensional Steenrod's homology and, respecti
vely, cohomology groups of regular cycles and cocycles of Fa, while HM_r(Ga, Y) and 
Hn~r(Ga, X) are projective homology and cohomology groups of Ga = K. The iso
morphisms and horizontal dualities of (10) are forms of Steenrod's duality theorem 
[16]. From these forms, Steenrod's original form can be obtained by applying Poinca-
re's duality theorem to the groups of K. The groups which we obtain by this dualisa-
tion form, with the groups of left and right verticals of Q)a, two auxiliary diagrams. The 
vertical dualities of 3)a are ordinary dualities of the homology and cohomology 
groups. The duality of the right vertical was considered in § 2. The duality of the left 
vertical is obtained similarly: in each complex participating in the definition of 
Steenrod's groups we only need interchange chains and cochains, i. e. consider the 
inverse system of chains and the direct system of cochains of finite open subcomp-
lexes in order to form the corresponding projective groups of the complex; when Y is 
compact, the limit is taken in the sense of § 1. 

The dualities and isomorphisms mentioned above satisfy the conditions of § 3 
and, therefore, Q)a is a diagram. Its correspondences are of degree 0 and of a-degree n. 

Consider now the set of all diagrams Q)a, ordered by 

a < b o Fa cz Fb, 

and the set of all homomorphisms of the groups of 3)a and Q)b, a < b, induced by the 
inclusions 

U ' Fa~* Fb and j b a :Gb-+ Ga. 

These diagrams and homomorphisms form a directed system of diagrams {S^a}. To 
prove this, it is most convinient to use the auxiliary diagrams mentioned above. 
Supplementary groups of the auxiliary diagrams are connected by homomorphisms 
induced by canonical transformations (see end of § 3). 

The limit diagram of the system {3)a} is 

(1,) HrQ4,K) J , Hn_r(B,Y) 

Hr(A, Y) *y* Hn~r(B, X) ' 

Here Hr(A, X) and Hr(A, Y) are Steenrod's homology and cohomology groups of A 
with compact carriers. The groups Hn_r(B, Y) and Hn~~r(B, X) are the homology and, 
respectively, the cohomology groups of B, based on neighbourhoods of B. But, as 
above, it can easily be shown that these groups coincide with the groups based on 
external coverings and, consequently, in virtue of Cecil's lemma, with projective Cech 
groups of B. (It is to be noted that there does not exist an invariant definition of the 
limit groups of systems consisting of supplementary groups of the auxiliary diagrams). 
Thus, diagram (11) gives the duality theorems for projective groups of arbitrary pairs 
of sets (A, B). The isomorphism of the groups Hr(A, X) and Hn~r(B, X) is the general
isation of Steenrod's duality theorem which coincides with the theorem proved by 
K. A. Sitnikov, Steenrod's groups being isomorphic to the groups considered by K. 
A. Sitnikov (see [14], cf. [3; 6g]). 
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If X is compact, we obtain, from the coincidence of the spectral and projective 
groups, the coincidence of diagrams (9) and (11) and, therefore, of Steenrod's and 
Vietoris5 groups; in this case the two coinciding theorems constitute the theorem of 
Alexander-Pontrjagin in its original form. 
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