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REMARKS ON FIXED POINT THEOREM 
FOR INVERSE LIMIT SPACES 

J. MIODUSZEWSKI and ML ROCHOWSKI 

Wroclaw 

A topological space X has the fixed point property (FPP) if for every continuous 
(single-valued) function f : X -» X there exists a point x e X such thatf(x) = x. Let 
us consider inverse systems [Xn9 nn, M} of spaces and functions, where nn : Xm -* 
-• Xm m §: n, are continuous and onto, and m, n e M, where M is a directed set. The 
inverse limit X = lim {Xn, nn, M} consists of all points x = {xm} me M, such that 
nn(xm) = xn f° r m = n- Let 7in(x) = X -* X,, be projections, i. e. functions defined 
by nn(x) = xn. The projections are assumed to be onto. We consider topological (not 
necessary metrizable) compact spaces X only. It is known [1] that every compact 
space X is an inverse limit of compact polyhedra. Hence we consider inverse systems 
of compact polyhedra only. 

We shall say that the inverse system {X„, nn, M} has the special incidence point 
property (SIPP) if for every continuous (single-valued) function / : Xm -> Xn, m ^ ny 

there exists a point xm e Xm such that f(xm) = nn(xm). 
We consider the following question: under what conditions concerning the inverse 

system, the inverse limit has the FPP? For the inverse system described above wc 
prove the following theorem. 

Theorem. If {Xm nn, M} has the SIPP then the inverse limit of it has the FPP. 
In the proof are considered some multivalued functions Fmn : Xm -> Xn9 induced 

by f, and their simplicial approximations. 
The fixed point theorem for snake-like continua (see [2], and also [3] for a more 

general result) is an easy consequence of the Theorem. 
Corollary. Let {Xm} be an increasing system of compact polyhedra i. e. Xn <z Xm 

for every m, ne M, m ^ n. Let nn be retractions, i. e. nn | Xn is the identity. Then if 
all Xn have the FPP then also the inverse limit X has the FPP. 

The following problem seems to be open: does the inverse limit have the FPP if 
all Xn have the FPP and the projections are onto? 
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