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PROJECTION SPECTRA AND DIMENSION 

B. PASYNKOV 

Moscow 

1. 

1. We shall consider for a bicompactum X three types of inverse spectra S = 

= (Xa, <): 
a) Combinatorial spectra — the Xa are finite complexes (= finite T0-spaces)/) 

and the projections are continuous mappings of T0-spaces. 

b) Polyhedral spectra: the Xa are polyhedra, the projections na are continuous 
("into"). 

c) Simplicial spectra: the Xa are polyhedra, each projection na is a simplicial 
continuous mapping of the polyhedron Xa, (with a certain triangulation) into the 
polyhedron Xa (also with a certain triangulation). 

2. Let us define the dimension of each spectrum S = (Xa, na
a) as 

ind S = sup ind Xa ; 
aeS 

thus for a bicompactum X there result the combinatorial dimension dimc X, the 
polyhedral dimension dimp X and the simplicial dimension dims X, each defined as 
the minimum of dimensions ind S of all spectra of the given kind (combinatorial, 
polyhedral, simplicial) having the bicompactum X as limit space. 

It is known that every bicompactum is the limit space of a simplicial spectrum 
(with projections which are in general not onto) — this is proved in the monograph 
[1] of S. EILENBERG and N. STEENROD; there are still older results of P. ALEXANDROFF 

and A. KUROSCH stating that every bicompactum is the limit space of a combinato
rial spectrum (whose elements are finite simplicial complexes in the classical sense with 
projections onto); the Alexandroff-Kurosch theorem has been generalized to para-
compact spaces by V. PONOMAREV (see his communication). 

3. The following resul ts seem to be new (for the proofs see [2] to appear in the 
Matematiceskij Sbornik). 

I. There exist bicompacta which cannot be represented as limit spaces of poly
hedral (a fortiori of simplicial) spectra with projections "onto". 

*) Every finite T0-space can be realized as a finite simplicial complex in the general sense: 
a face of a simplex of the given complex may not belong to this complex. 
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II. The following relations hold for every bicompactum: 
dim X S dimp X ^ dims X , 
Ind X < dim. X < dimc X . 

If dimp X ^ 1 then moreover 
Ind X ^ dimp X 

III. There exists a bicompactum X with 

dim X = ind X = Ind X = dimc X = 1 
and 

dimp X > 1 . 

IV. For n = 1, 2, 3, ... there exist bicompacta Xn with 

dim Xn = ind Xn = Ind Xn = dimc Xn = 1 
and 

dims X = rz . 

These results shows a certain analogy with the beautiful results of P. VOPENKA 

(concerning dim X, ind X, Ind X). 
V. The "dimensional sum theorem" for a countable number of summands holds 

neither for dimp X nor for dims X; it does not hold for dimc X even for two sum
mands. 

The following ques t ions remain open, as far as I know: 
a) Does there exist a bicompactum X with 

Ind X < dimc X . 

b) Is the sum theorem true for dimp X and dims. X in the case of a finite numbers 
of summands. 

2. 

By means of inverse spectra of the form S = (Xa, 7if), where the Xa are Haus-
dorff spaces (and the projections are continuous) the following theorem can be proved 
(see [3], [4]). 

Theorem2). Let G be a local bicompact group and H a closed subgroup of G. 
Then for the quotient space X = GjH the following identity holds: 

ind X = Ind X = dim X = ind G - ind H . 

(As a corollary we obtain that 

ind G = Ind G = dim G , ind H = Ind H = dim H) . 

For the case ind X <oo (which includes the case ind G < oo), as well as for the 
case ind H < oo I gave a direct proof of this theorem; in the infinite dimensional case 
the following theorem of E. SKLYARENKO [5] has been used: If dim X =oo, then X 
contains a topological image of the infinite dimensional Hilbert cube. 

2) This theorem answers a problem raised by E. MICHAEL. 
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