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CATEGORIAL ASPECTS ARE USEFUL FOR TOPOLOGY

V&ra Trnkové
Prgha

Under this title, a lecture by M.HuSek and the author was deli-
vered at the Topological symposium, In the lecture, several themes
were discussed. We wanted to show some examples how categorial met-
hods and categorial point of view bring or inspire results often
"purely topological".

The present paper is a part of this lecture. It consists of two

themes discussed in the lecture (the other themes will appear else-
where), namely

I. EMBEDDINGS OF CATEGORIES
and

IY, HOMEOMORPHISMS OF PRODUCTS OF SPACES.

These themes concern distinct fields of problems; however, they
are not independent in their methods. The first theme leads e.g. to
constructions of stiff classes of spaces (see I.2) and the second
one heavily uses them,

The author is indebted to J. Adfémek for the reading of some

parts of the manuscript and for some comments tending to make the
manuscript more lucid.




I.

1, Let us begin with the well-known result of de Groot ([dG])
that every group is isomorphic to the group of all homeomorphisms of
a topological space onto itself. In 1964, at the Colloquium on topo-
logy in Tihany, he put a problem whether any monoid (i.e. a semigroup
with the unit element) is isomorphic to the monoid of all non-const-
ant continuous mappings of a topological space into itself. Let us
notice that the set of all non-constant continuous mappings does not
always form a monoid, the composition of two non-constant mappings
can be constant. The exact formulation is as follows. Given a monoid
N, does there exist a space X such that the set of all non-constant
continuous mappings of X into itself is closed under composition and
this set, endowed with this composition, forms a monoid isomorphic
to M 7 This was solved positively in [Tr;]l, the space X can even be
chosen to be metrizable, or, by [Trsl, compact and Hausdorff. The
proof is based on a nice result of Z., Hedrlin gsnd A. Pultr. They pro-
ved in [HP] that any small category (i.e. a category, the objects of
which form a set) is isomorphic to a full subcategory of the catego-
ry Graph of all directed graphs and all their compatible mappings.
What is really presented in [Trll is a construction of a functor M
of Graph into the category Metr of all metrizable spaces and all
their continuous mappings, with the following property. For any pair
G, G¢° of graphs,

M(E): M(G) —M(G")

is a bijection of the set of all compatible mappings of G into G _on-
to the set of all non-constant continuous mappings of M (G) into
M(G7). Since any monoid M can be considered as the set of all mor-
phisms of a category with precisely one object, there exists, by LHPJ,
a graph G such that M is isomorphic to the monoid of all compatible
mappings of G into itself, Hence, M is isomorphic to the monoid of
all non-constant continuous mappings of M (G) into itself. In [Trg],
g functor ¢ from the category (Graph)®P, opposite to Graph, into
the categorylgggg'of all compact Hausdorff spaces 1s constructed such
that, again, for any pair of graphs, G, G,

£: G— G’Nw‘em._, € (£): €(G°) — € (G)

£ G—G’

is a bijecticn of the set of all compatible mappings of G into G'ng:
to_ the set of all non-constant continuous mappings of 2(G°) into

%€ (G). This makes it possible to obtain the analogous result for
compact Hausdorff spaces.
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2. These categorial methods give, as a byproduct, some results
concerning stiff classes of spaces. Let us recall that a class € of
topological spaces is called stiff if for eny X, Y ¢ € and any con-
tinuous mapping f£f: X~> ¥ either £ is constant or X = Y and £ is the
identity (sometimes, also the word rigid or strongly rigid is used).
Let a cardinal # be given, let k() be a discrete category (i.e.
with no morphisms except the identities) such that its objects form
a set of the cardinality s . Since k() is a small category, it is
isomorphic to the full subcategory of Graph. Its image under 4 1is s
stiff set (of the cardinality 44 ) of metrizable spaces. Analogous-
ly, we obtain arbitratily large stiff sets of compact Hausdorff spa-
ces by means of the functor € . Let us remark that L. KuZera and Z.
Hedrlin proved (see [H1) that, under the following set-theoretical
assumption
(M) relatively measurable cardinals are not cofinal in the class of

all cardinals,
any concrete category is isomorphic to a full subcategory of Graph.

A "large discrete category" is concrete, obviously. Consequently, un=-
der (M), the functor M (or € ) gives a stiff proper class of met-
rizable (or compact Hausdorff) spaces. Let us notice that a stiff pro-
per class of paracompact spaces was constructed in [K] without any
set-theoretical assumption.

3. Let us recall some usual notions about categories and func-
tors. A functor ¢ : K—>H is called a full embedding if it is an
isomorphism of K onto a full subcategory of H, Now, let H be a cate-
gory of topological spaces and all their contimuous mappings. @ is
called an almost full embedding if, for any pair a, b of objects of KX,

f: a—»b AJ\;?J\M@ (£): @ (a) —s O (b)

is a bijection of the set of all morphisms of a to b_onto the set of
all non-constant continuous mappings of @ (a) to & (b). A category
U is called universal (or s-universal) if every concrete category (or
small category, respectively) can be fully embedded in it. A category
T of topological spaces and all their continuous mappings is called
almost universal (or almost s-universal) if every concrete category
(or small category, respectively) can be almost fully embedded in it.
In this terminology, Graph is s-universal and, under (M), it is uni-
versal. Metr and Comp are almost s-universal and, under (M), they are
almost universal. What V. Koubek really proved in [K] is that the ca-
tegoryzs& of all paracompact spaces is almost universal. (He starts
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from a result of L. Kulera and Z. Hedrlin that a rather simply defin-
ed category is universal and constructs an almost full embedding of
it to the category Par.)

All the above results and their proofs and many others (for ex-
ample, the investigation of topological categories with other choice
of morphisms than all continuous mappings) are contained, with all
the details, in the prepared monograph [PT].

4. All the gbove results say that there are spaces such that all
non-constant continuous mappings between any pair of them have some
prescribed properties. A classical question of topology is about non-
constant continuous mappings into a given space. Let us recsll the

regular space without non-constant contimuous real function of E. He-
witt [Bw] and J. Novék [N] and the following well-known generalizat-
ion of H. Herrlich [ Hrl. For any Tl-space Y there exists a regular
space X with more than one point and such that any continuous mapping
f: X—>Y is constant. Now, we can ask about the coherence of these
problems. For example, let a Tl-space Y and a monoid M be given. Does
there exist a space X (regular, if possible) such that any continuous
mapping £: X—>Y is constant and all non-constant continuous mapp-
ings of X into itself form a monoid isomorphic to M 7 A stronger as-
sertion than the affirmative answer to this question states, is the
following

Theorem. For any Tl-space Y, all regular spaces without non-
constant continuous mappings into ¥ (and all their continuous mapp-
ings) form an almost universal category.

5. Let us sketch a gemeral construction which gives not only the
above theorem but also some further results stated in the next theo-
rems. It is based on the combination of the method used in fTrl],[Kj
and that of LHrl,[EF],(G]. Let <§° be a functor of a category K into
the category Top of all topologicel spaces. Let, for any K-object o ,
the space d}o(o') contain a point, say ¢, with the following pro-
perty.

For any K-morphism m: or—> o’ , &,(m) maps & (o) N fe ¥

into $ () 1o’y and o, on o,

Let Q be a space with three distinguished points, say Q159543 By an
"iterated glueing" we obtain a new functor ¥ : K-> Tgp. It is defi-
ned by induction. We start with & . If & : K—»Top and o, in
every & (o) are defined, §n+l is obtained as follows. For any
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xe @ () N 4o %, we add a copy of Q to § (o) and identify Qy
with x, q; with 0 ; finally, we identify the q3'a of all coples of
Q; the obtained point is Oy IE DO —> o’ is a K-morphism,
then &, (m) is extended to & ,,(m) so that the copy of Q joining

x and ©O7, is mapped "identically" onto the copy of Q joining (én(m))
(x) and O"n. ¥ is the union of the functors Qn, n=0,1,2,s00 &
6. Now, let K be a universal (or s-universal) category and let
¥ be an almost full embedding. Then the range category of ¥ is al-
most universal (or almost s-universal, respectively) and the spaces
Y¥(¢’) have some desired properties.This is the basic idea of all the
proofs. We start with the functor from the universal category into
gg‘g‘, constructed in [K], or from the s-universal category Gragh into
Metr, constructed in [Tryl. This is &, . If Q is suitably chosen, ¥
can be proved to be an almost full embedding.
The construction of &, in [K1 and [Tr;] as well as the construction
of sultable Q heavily use the existence of a Cook contimuum [C], i.e.
a metrizable continuum H such that, for any subcontinuum L and any

continuous mapping £: L —» H, either £ is constant or f£(x) = x for
all xe L,

T. We sketch briefly the construction of the space Q. It depends
on a given space Z (when Z is a regular totally disconnected space
such that any continuous mapping of Z into a given Tl-space Y does
not distinguish two points q;, Q9 we obtain the previous theorem,
but other choices of Z are used, too). Let A, B;, B, be countab-
le sets of non-degenerate subcontinua of a Cook continuum H such
that A U B, v 332 is pairwise disjoint. A is used for the const-
ruction of ®, as in [K1 or LTry1. Then we construct two spaces B,
and B , like in the following figure:

B,:
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where the «zz='s are distinct members of 5, (in any of them, two
distinct points are chosen for the merging). B, and bi,bg,bg are con-
structed analogously, by means of :ﬁz. We construct Q starting from
the space Zv z’, where Z 1s the given space, z° 1s e discrete space
of the same cardinality, v denotes & disjoint union as closed~and-o-
pen subsets and z —> z° 1is & bijection of Z onte z’. For any € Z we
2dd a copy of By, where we identify b} with z and by with z’. Let Rc
cZ’% 2° be the binary relation described in [VHP1l, For any (yl,yz)e
¢R, we join y; with y, by & copy of B,, i.e. we iden‘{ify 21 _with bi
and Yo with hz; finally, we identify all the points b3 and b3 for all
the copiles of Bl and Bz,. The point obtained by this last identifica-
tion is a3 Q) and qy &re two distinet points of Z.

8. The theorems stated in 9. and 10, are obtained by this const-
ruction if we choose a suitable Z. (The particular choice of Z is al-
ways given after the theorem.) In all these cases, it can be seen ea-
sily that the spaces ¥ (o) have the required properties. On the ot-
her hand, the proof that ¥ is really an almost full embedding,which
is the heart of the matter, is more complicated and rather technical.

9. Let V be a topolcogical space. We say that a space X contains
V many times if for any veV and any xe X there exists a homeomorph-
ism h of V onto a closed subspace of X such that h(v) = x. In the fo-
llowing theorems, speaking about categories of topological spaces, we

Theorem. Let V be a paracompact (or normal or completely regul-
ar) totally disconnected space. Then all paracompact (or normal or
completely regular) spaces, containing V many times, form an almost
universal category.

Theorem., Let V be a metrizable totally disconnected space. Then
all metrizable spaces, containing V many times, form an almost s-uni-
versal category and, under (M), they form an almost universal catego-
Yo

For the proof of these theorems, we use Z in the above construction
as follows. We take a copy of V, say V(v), for any point veV, and i-
dentify all these points v, each in its copy V(v). The obtained point
is q), 9,€ 2\ {q;t is arbitrary. For the second theorem, all the i-
dentifications in the definition of the functor ¥ must be done "me-
trically”.
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10. For separation properties weaker than the complete regulari-
ty, the construction gives a much stronger result. We can omit the
assumption that the given space V is totally disconnected and, simul=-
taneously, continuous mappings in a given space can still be required
to be constant. More precisely, the following theorem holds.

Theorem. Let a space Y be given. Let V be a space (or Haus-
dorff or regular). Then all the spaces (or Hausdorff spaces or regular
spaces, respectively) X containing V many times and such that any
continuous mapping £: X—>Y is constant, form an almost universal
category.

For the proof of this theorem, we use Z in the above construect-~
ion as follows. We take a copy V(v) of V, for any v&V, and identify
these points v, as in 9. Denote the obtained space by W, its point
obtained by the identifications of the v's by w. Now, let U be a to-
tally disconnected regular space and qy» qa‘two its distinct points
such that, for any contimious mapping £ of U into any Tl-apace of the
cardinality smaller than exp (4{0- card Y - card W), f(qy) = f(qa).
(The space constructed in (Hr] or LG] has really only one-point com=
ponents, q and Q. are, of course, in one quasicomponent.) Z is a sp-
ace obtained from a disjoint union of W and U by the identification
of w and Qe

11, Let us show some "purely topological"” immediate consequen-

ces of the above theorems. By the last theorem,
there exists a stiff proper class of regular spaces, in which
any point lies on an arc.

Another application: since for any set X there exists Rc ¥x X such

that the graph (X,R) has no non-identical endomorphism (see CVPHI),
any totally disconnected space V can be embedded as a closed
subspace in a space X without non-constant non-identical conti-
nuous mappings into itself such that card X =2 2 ¢« card V
and X is completely regular or normal or paracompact or metriz-
able whenever V has this property.

Analogously,
for any space V and any cardinal oo > card V there exists a
space ¥ without nan~constant non-identical continuous mappings
into itself such that card X = 2 %0 . « , X contains V as a
closed subspace and X is Hausdorff or regular whenever V has
this property.

Spaces without non-constant non-identical continuous mappings into
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itself are considered in [KR], where for any infinite cardinal
such Hausdorff space X with card X = & is constructed.

12. The described construction does not "work" for compact spa-
ces. Nevertheless, the following theorem holds.

Theorem. Let V be a totally disconnected compact Hausdorff spa-
ce. Then all connected compact Hausdorff spaces, containing V many
times, form an almost s-universal category. Under (M), they form an
almost universal category.

Here, the proof starts from a modification of the almost full embed-
ding of (Graph)°P into Comp, described in LTrgl, and the "iterated
glueing®” must be done in a different way. The full proof will appear
in [Trsl, where also the proofs of the previous embedding theorems
will be given in more detail.
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II.

l. In 1957, W. Hanf [H] constructed a Boolean algebra B isomor-
phic to B<BxB but not to BxB, The analogous result for Abelian
groups was proved by A.L. Corner in 1963 (see [Crl). The analogous
problem can be investigated in an arbitrary category. Let K be a
category with finite products. Given a natural number n=23, denote
by

K (n)
the class of all objects X of [K such that

X is isomorphic to XX eee x X (n=-times) and Xx oo x X (k=-times)

is not isomorphic to X% ...x X (k'-times) whenever l£k<k &

£n - 1.

Let us consider [K to be the category of topological spaces. By
LTr,l, for every n, IK(n) contains a locally compact separable met-
rizable space. A large part of the method of the proof is categorial,
it admits not only a categorial formulation but also an application
to other familiar categories. This is done in [Tr3] s where the ana-
logous result is shown also for uniform and proximity spaces, graphs,

small categories and some types of partial algebras and unary algeb~-
Irase.

2, Now, we strengthen the above result as follows.

Theorem. Let [ be the category of topological spaces. Let C
be a class of spaces such that

(a) € contains all metrizable continua;

(b) € 1is closed under finite products end countable ccpro-

ducts ( = disjoint unions as clo-open subsets).

Then for any n>3 and any X in € there exist 2‘“0 non-homeomorph-
ic spaces in € A K (n) such that each of them contains X as a
closed subspace and its cardinality is equal to 2% , card X.

Proof. a) If Y is a space, denote by Y° a one-point space, =
=Y, ™1 = v, Denote by N the set of all non-negative integers
and by N the set of all functions on N with values in N, Let
{K(x)]| xeN u£00%3 be a countable stiff set (see I.2) of metriza-
ble continua. For any £e N put Ko = Tn (K(x) (), By [Try1,

(%) Kp is not homeomorphic to Ky, whenever £ # L .

b) For £,2 e N define £ + £ by (£ +£)(x) = £(x) + £’ (x). For
A, Bc NV define A +B=4a+bls€A,beB}. If n = 1,2,..., put
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NeA=A+,..% A(n—times). Let nz3 be given. By LTr;], there exists
a countable set Ac W such that

(i) for eny ac A, a(x)$0 for infinitely many x € N;

(11) A = n. A;

(14i) 4f 14k<k'<n - 1, then k.A n k'+A = @.

c) Let a space X in € be given, Put 2 = XxK(ow), hence Z e C .
Put
Y= Ll (Z*<K,) Y = 1l (z°<K)

x€ N a’? °© geA a’?

a €
where Li denotes coproduct. Let Y (or Y ) be a coproduct of Ko
pies of 54 (or T 0! respectively). Clearly, Y contains X as a closed
subspace and card Y=2 ° ¢« card ¥ . Since Y contains 5’0 copies
of any Z*x K,, Y is  homeomorphic to Y7, by (ii).

d) Let us notice that any continuous mapping of K(w) into K, is
congstant for any £ € N . Hence Yo consists precisely of all compo-
nents C of Y such that any continuous mapping of K(oo) into C is con-
stant. Consequently, Yk is homeomorphic to Yk whenever Yk is homeo-
morphic to Yk, l£4k<£k £ n ~ 1, By (1ii), this is possible only when
k=k", Thus, the space Y has all the required properties.

e) Now, we show that there are many such spaces. et $ be a system
of infinite subsets of N such that card & = 2% and, for any dist-
inct §;,S8, € $ , §n S, is finite. Let g N—> S be a bijection.
Construct Y(S) by means of the spaces {K(yg(x))| xe N3} quite ana-
logously as Y by means of {K(x)| xeN%. By (i) and (%), Y(Sl) is

not homeomorphic to ¥( Sz) whenever S, and S, are distinct elements of

S e

3. The conditions (a),(b) are not too restrictive, the theorem
can be applied e.g. for the class of all spaces, all Tl—spaces, Haus-
dorff, regular, completely reguler, metrizable, & ~compact, realcom=
pact (or E-compact whenever E contains san infinite closed discrete
subset and an arc), locally metrizable, spaces with the first or sec-
ond axiom of countability, separable (or with a density character eg-
ual to a given cardinality) and many others. On the other hand, the
important class of compact Hausdorff spaces does not satisfy them.
Nevertheless, the following theorem holds.

Theorem, For any n23 and any compact Hausdorff (or compact met-
rizable) space X, there exists a compact Hausdorff (or compact metri-
zable) space in Ik (n) which contains X as a closed subspace.

Outline of the proof. We may suppose that the given space is &
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cube (or a Hilbert cube). Construct Y snalogously as in the previous
proof. Let T be a compactification of Y. Since Y is a coproduct of
compact connected spaces, y€ T is in Y iff y has a connected neigh-
bourhood in T. Consequently, is homeomophic to Yk‘ whenever Tk is
homeomorphic to %" (124 x4k’4 n - 1). This is possible only when
k=k', Thus, it is sufficient to construct a compactification T of
¥ such that T is homeomorphic to T, The construction will be given
in two steps.

a) First, we choose a homeomorphism h of Y onto Y? and find a compac-
tification T  of Y such that the following diagram commutes:

£

n
T, ——s T0
LOT 1\"3”
¥ — o,

where L, isthe embedding and f is a continuous mapping (if g: P—
—> Q is a mapping, we denote by gn: P Q" the mapping defined by
gn(pl,...,pn) = (g(py)yees,8(py)))s This is easy for compact Haus-
dorff spaces; we put To = Y and f is & continuous extension of

L ga h. Now, we construct a metrizable compactification To for met-
rizable Y. LetOI;I be t}},? Hilbert cube, 9e : ¥ —> H an embedding. Defi-
ne A:¥—s TT, B by

2 k+l k
Aly) = (2e(y), ™nly)), 2 (h%(y)),e.., 2™ (2" (§)),...)

k

] 00 k
n n
and 'r‘n'joﬂ""l_‘s't H

by w(25y2)525,000) = (2),255000 ),
nt 22 o n
where z;6 H" , Denote R = §1,2,...,n%. Then any 26 ( ,JT, H )" can
be expressed as z = (((zg j | e lx = 0,1,2,... ) | 16 R). Defi-
o nk n o0 nk

ne a homeomorphism €: ( JT1g B )"—> TT, H by 6(z) =

= ((zi,J,k l(1,5)e RxB) | ¥ = 0,1,2,... ). One can verify that

(6™ o %)oA = APoh., Then define T, a8 the closure of A(Y) in

00 k
,Q.,T-._ro i and £ as the corresponding domain-range-restriction of

5'-10'3 .

b) Now, we consider the following diagram.
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T‘——:‘;‘;—»'Pl ——f——>oT2 ———->0T3--—-,--.T——————>0T +1"'
(]

12 f’-/3 N fw,w+4
Y [y G ¢ Y Lorl

R rwusls By mrastt’ By ansih: RRhint far unmat W

where Y =Y, ho,l = h, fo,l = f are as in a) and Typ1 = T’;, Lial ©

= (0 = n n P, are
Civ hyyy ga2 = (hy 34907 £34g 3e0 = (8 349) 7y %, end @

colimits in the category of all Hausdorff spaces of the premdin8
chains (hence, T.,, is a compact Hausdorff space; it is metrizable
whenever T  is metrizable). The proof that Ly is a homeomorphism
of Y into Ty 1s omitted as well as the definition of h, o+l and
%,m'l whenever « is a limit ordinal (this definition is 'natural”,
use the fact thet ¥, ., =¥y , 2, , = T{). All h, 4 are homeomorph-
isms of Y onto Y3 , all £, 5 are surjective continuous meppings.
Since all the 'I',x,'s are quotients of T,, this process must stop, i.e.
£, o+1 Dust be a homeomorphism for some ordinal < . Then I, is a

9
compactification with the required properties.

4. The proofs of all the above theorems are based on the stiff
set {K(x)| xe N? of non-degenerate continua. Thus, none of the con-
structed spaces is zero-dimensional. Nevertheless, the following the-
orem holds (the proof will appear in [TK] ).

Theorem. For any n23, any Boolean space can be embedded into a
Boolean space from [K(n).

5« Let us sketch a more general setting of the above field of
problems. Let |k be a category with finite products, let (S,+) be a
commutative semigroup. Any mapping

r: S—>obj K

is called a representation of the semigroup by products in |k provi=-
ded that for any sy, 8,€S, r(sl + 32) is isomorphic to r(s,)x r(sz)
and r(s;) is not isomorphic to r(sz,) whenever s;+s,.

Hence, any object X from JK (n) generates a representation of the
finite cyclic group of the order n-1l, In ['1'1'3] s 8 general method is
described for the representation of any semigroup exp l‘lM (here, N“ is
the semigroup of all functions on M with values in N, exp o is the
semigroup of all its subsets) in several familiar categories, includ-
ing the category of topological or uniform or proximity spaces. By
El‘r4'l, any commutative semigroup S can be embedded into exp nWorcard S_
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Hence, any commutetive semigroup S has a representation by products
of topological spaces. These spaces can be chosen to be coproducts
of continua, by [Tr51, or coproducts of Boolean spaces, by [AK]. The
results presented in I. of this paper imply the following assertions
as an immediate consequence.

Given a T;-space X (or Hausdorff or regular), any commutative
semigroup has a representation by products of T;-spaces (or
Hausdorff or regular) containing X many times.

Given a totally disconnected Tichonov space X, any commutative
semigroup has a representation by products of Tichonov spaces
containing X many times. :
The method, used in II.2, can be used to prove easily the following
assertion.

Let € be a class of spaces containing all continua snd closed
under finite products and arbitrary coproducts. Let X be a spa-
ce, let (C (X) be the class of all spaces from L , which cont-
ain X as a closed subspace. If (€ (X)% @, then any commutative
semigroup has a representation by products of spaces from the

T x). "
In [AK]l, the semigroups (exp NN) are represented by products such

that only countable products of spaces of the basic system 4 K(x) |
xeNxM% are used. This makes it possible to represent the class of
all semigroups, embeddable in (exp NN)M'for some set M, by products
of metrizable spaces. This class of semigroups contains all Abelian
groups. Thus, the method of L[AK] and the results presented here can
be used to prove easily the following assertions.

Given a totally disconnected metrizable space X, any Abelian

group has a representation by products of metrizable spaces con-

taining X many times.

Let € be a class of spaces containing all complete metric se=-
micontinua and closed under finite products and arbitrary co-
products. Let X be a space, T (X) the class of all spaces from
C which contain X as a closed subspace. If (€ (X)+ @, then any
Abelian group has a representation by products of spaces from
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