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CATEGORIAL ASPECTS ARE USEFUL FOR TOPOLOGY 

Věra Trnková 
Praha 

Under this title, a lecture by M.HuSek and the author was deli
vered at the Topological symposium. In the lecture, several themes 
were discussed. We wanted to show some examples how categorial met
hods and categorial point of view bring or inspire results often 
"purely topological"* 

The present paper is a part of this lecture. It consists of two 
themes discussed in the lecture (the other themes will appear else
where) , namely 

I . EMBEDDINGS OF CATEGORIES 
and 

I I . HOMEOMORPHISMS OF PRODUCTS OF SPACES. 

These themes concern distinct fields of problems; however, they 
are not independent in their methods. The first theme leads e.g. to 
constructions of stiff classes of spaces (see 1.2) and the second 
one heavily uses them. 

The author is indebted to J. Ad£mek for the reading of some 
parts of the manuscript and for some comments tending to make the 

manuscript more lucid. 



I. 

1* Let us begin with the well-known result of de Groot (IdG]) 

that every group is isomorphic to the group of all homeomorphisms of 

a topological space onto itself* In 1964, at the Colloquium on topo

logy in Tihany, he put a problem whether any monoid (i.e. a semigroup 

with the unit element) is isomorphic to the monoid of all non-const

ant continuous mappings of a topological space into itself. Let us 

notice that the set of all non-constant continuous mappings does not 

always form a monoid, the composition of two non-constant mappings 

can be constant* The exact formulation is as follows* Given a monoid 

BS, does there exist a space X such that the set of all non-constant 

continuous mappings of X into itself is closed under composition and 

this set, endowed with this composition} forms a monoid isomorphic 

to M 7 This was solved positively in tTr-jl, the space X can even be 

chosen to be metrizable, or, by LTr-»l, compact and Hausdorff. The 

proof is based on a nice result of Z. Hedrlfn and A* Pultr. They pro

ved in [HP] that any small category (i.e. & category, the objects of 

which form a set) is isomorphic to a full subcategory of the catego

ry Gragh of all directed graphs and all their compatible mappings* 

What is really presented in [Tr̂ l is a construction of a functor M 
of Gragh^into the category Metr^of all metrizable spaces and all 

their continuous mappings, with the following property* For any pair 
G, G' of graphs, 

f: G^G'~^t~»M,(£): JHQ)—*JHQ') 

is a bijection of the set of all compatible mappings of G into G^onr 

tojthe set of all non-constant continuous mappings of M(G) into 

J1(G')« Since any monoid M can be considered as the set of all mor-

phisms of a category with precisely one object, there exists, by LHP J, 

a graph G such that M is isomorphic to the monoid of all compatible 

mappings of G into itself* Hence, M is isomorphic to the monoid of 

all non-constant continuous mappings of M(G) into itself* In [ST-.], 

a functor *£ from the category (Graph)op, opposite to Graph^ into 
the category Comp of all compact Hausdorff spaces is constructed such 

that, again, for any pair of graphs, G, G', 

f: G —* G'~v/^£vu> <C (t)i <e(G') ><€(G) 

is a bijection of the set of all compatible mappings of G into G'_on-

to_the set of all non-constant continuous mappings of 12 (G') into 
<C(G)m This makes it possible to obtain the analogous result for 
compact Hausdorff spaces* 
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2. These categorial methods give, as a byproduct, some results 

concerning stiff classes of spaces. Let us recall that a class t£ of 

topological spaces is called stiff if for any X, Y e £ and any con

tinuous mapping f: X — * I either f is constant or X * Y and f is the 

identity (sometimes, also the word rigid or strongly rigid is used). 

Let a cardinal 4H> be given, let k(A^) be a discrete category (i.e. 
with no morphisms except the identities) such that its objects form 

a set of the cardinality ML • Since kU<*) is a small category, it is 
isomorphic to the full subcategory of gragh. Its image under 4 is a 

stiff aet (of the cardinality AH, ) of metrizable spaces. Analogous
ly, we obtain arbitratily large stiff sets of compact Hausdorff spa

ces by means of the functor <£ • Let us remark that L. KuSera and Z. 

Hedrlin proved (see IH]) that, under the following set-theoretical 

assumption 

(M) relatively measurable cardinals are not cofinal in the class of 

all cardinala, 

any concrete category is isomorphic to a full subcategory of Graph. 

A "large discrete category" is concrete, obviously. Consequently, un

der (M), the functor M (or <€ ) gives a stiff proper class of met

rizable (or compact Hausdorff) spaces. Let us notice that a stiff pro

per class of paracompact spaces was constructed in [K] without any 

set-theoretical assumption. 

3* Let us recall some usual notions about categories and func

tors. A functor $ : K — * H is called a full embedding if it is an 

isomorphism of K onto a full subcategory of H. Now, let H be a cate

gory of topological spaces and all their continuous mappings. $ is 

called an almost full embedding if, for any pair a, b of objects of K, 

$ 
f: &—*b /v/v/\^v/\*$ ( f ) : $ (a) > $ (b) 

is a bijection of the set of all morphisms of a to b_onto_ the set of 

all non-constant continuous mappings of §(a) to $ ( b ) . A category 

U is called universal (or s-universal) if every concrete category (or 

small category, respectively) can be fully embedded in it. A category 

T of topological spaces and all their continuous mappings is called 

almost universal (or almost s-universal) if every concrete category 

(or small category, respectively) can be almost fully embedded in it. 

In this terminology, Gragh, is s-universal and, under (M), it is uni

versal. JJg&X,and Compare almost s-universal and, under (M), they are 

almost universal. What V. Koubek really proved in [K] is that the ca

tegory Par of all paracompact spaces is almost universal. (He starts 
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from a result of L, KuSera and Z. Hedrlln that a rather simply defin

ed category is universal and constructs an almost full embedding of 

it to the category Ĵ ar.) 

All the above results and their proofs and many others (for ex

ample, the investigation of topological categories with other choice 

of morphisms than all continuous mappings) are contained, with all 

the details, in the prepared monograph TPT]# 

4. All the above results say that there are spaces such that all 

non-constant continuous mappings between any pair of them have some 

prescribed properties* A classical question of topology is about non-

constant continuous mappings into a given space. Let us recall the 

regular space without non-constant continuous real function of E. He

witt HKw] and J. Nov&k [Nl and the following well-known generalizat

ion of H. Herrlich [ Hr]• For any T^-space Y there exists a regular 

space X with more than one point and such that any continuous mapping 

f; X — > Y is constant. Now, we can ask about the coherence of these 

problems* for example, let a T^-space Y and a monoid M be given. Does 

there exist a space X (regular, if possible) such that any continuous 

mapping f' X — > Y Is constant and all non-constant continuous mapp
ings of X into itself form a monoid isomorphic to M ? A stronger as

sertion than the affirmative answer to this question states, is the 

following 

Theorem. For any T^-space Y, all regular spaces without non-

constant continuous mappings into Y (and all their continuous mapp

ings) form an almost universal category. 

5. Let us sketch a general construction which gives not only the 

above theorem but also some further results stated in the next theo

rems. It is based on the combination of the method used in fTr^] ,tKJ 

and that of LHr3 ,[EFJ,[G3. Let $ Q be a functor of a category K into 

the category Tqp of all topological spaces. Let, for any K-object <r , 
the space ^>0C(y ) contain a point, say <ro, with the following pro

perty. 

For any K-morphism m: <r—* <y' , <|>0(-a) maps $ 0 ^ ) \ ^&0% 
into $0(<^')\^<y0? and <yQ on <r̂ . 

Let Q be a space with three distinguished points, say Q^,q2,q^. By an 

"iterated glueing" we obtain a new functor If : K—>Toj>. It is defi

ned by induction. We start with $ Q. If <§n: K—-^JT^ and <rn in 

every $n(o*) are defined, §n+l ia o b t a i n e d a s follows. For any 
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6. Now, let K be a univeraal (or s-universal) category and let 

y be an almost full embedding. Then the range category of Y ia al

most universal (or almost s-universal, respectively) and the spaces 

Y(o') have some desired properties.This is the basic idea of all the 

proofs. We start with the functor from the universal category into 

Par, constructed in LK3, or from the s-universal category Grggh into 

Metr, conatructed in [Tr-jl. This is <$
Q
. If Q is suitably chosen, Y 

can be proved to be an almost full embedding. 

The construction of <|j
0
 in tKl and [Tr^ as well as the construction 

of suitable Q heavily use the existence of a Cook continuum [01, i.e. 

a metrizable continuum H such that, for any subcontinuum L and any 

continuoua mapping f: L — * H, either f ia constant or f(x) » x for 

all x&L* 

7. We aketch briefly the conetruction of the epace Q. It depends 

on a given space Z (when Z is a regular totally disconnected space 

such that any continuoua mapping of Z into a given Tj-space Y does 

not distinguish two points q^
t
 q

2
$ we obtain the previous theorem, 

but other choices of Z are used, too). Let A, 3$^, JQ^ be countab

le sets of non-degenerate subcontinua of a Cook continuum H! such 

that J t u ^ i ^ - B
2
i s pairwise disjoint. A is used for the const

ruction of $
 0
 as in[K3 or CTr^I. Then we construct two spaces B ^ 

and B
 2
 like in the following figure: 

Br. 

ьl 
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where the «&z&*'& are diatinct membere of JB^ (in any of them, two 

distinct points are chosen for the merging). B2 and b|,b|,b? are con

structed analogously, by means of &£. We construct Q starting from 

the space ZvZ', where Z is the given space, z' is & discrete space 
of the same cardinality, v denotes a disjoint union as closed-and-o-

pen subsets and z—> z' is a bisection of Z onto z'. For any seZ we 

add a copy of Blf where we identify bj with z and b^ with z'. Let Re 

cZx. z' be the binary relation described! in CVHPJ. For any (yi,y2^ 

eR, we join y^ with y2 by a copy of B.̂ , i.e. we identify y^ with bĵ  

and y2 with t|; finally, we identify all the points b3 and bj for all 

the copies of B^ and B̂ ,. The point obtained by this last identifica

tion is qs, q± and q2 are two distinct points of Z. 

8. The theorems stated in 9. and 10. are obtained by this const

ruction if we choose a suitable Z. (The particular choice of Z is al

ways given after the theorem*) In all these cases, it can be seen ea

sily thst the spaces T(o") have the required properties. On the ot

her hand, the proof that T is really an almost full embedding,which 

is the heart of the matter, is more complicated and rather technical. 

9. Let V be a topological space. We say that a space X contains 

V many times if for any v e V and any x e X there exists a homeomorph-

ism h of V onto a closed subspace of X such that h(v) = x. In the fo

llowing theorems, speaking about categories of topological spaces, we 

always mean these spaces and all their continuous mappings. _A11 spa-

2?.*L jaE^^pRoaed JiOL he-?i-sPJ.S?SLi 

Theorem. Let V be a paracompact (or normal or completely regul

ar) totally disconnected space. Then all paracompact (or normal or 

completely regular) spaces, containing V many times, form an almost 

universal category. 

Theorem. Let V be a metrizable totally disconnected space. Then 

all metrizable spaces, containing V many times, form an almost s-uni-

versal category and, under (M), they form an almost universal catego

ry. 

For the proof of these theorems, we use Z in the above construction 

as follows. We take a copy of V, say V(v), for any point veV, and i-

dentify all these points v, each in its copy V(v). The obtained point 

is q̂ i q2€Z\<q-lTr ia arbitrary. For the aecond theorem, all the i-

dentificationa in the definition of the functor X muat be done "me

trically". 
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10# For separation properties weaker than the complete regulari

ty, the construction gives a much stronger result. We can omit the 

assumption that the given space V is totally disconnected and, simul

taneously, continuous mappings in a given space can still be required 

to be constant. More precisely, the following theorem holds. 

Theorem. Let a space Y be given. Let V be a space (or Haus-

dorff or regular). Then all the spaces Cor Hausdorff spaces or regular 

spaces, respectively) X containing V many times and such that any 

continuous mapping f: X — > Y is constant, form an almost universal 

category* 

For the proof of this theorem, we use Z in the above construct

ion as follows. We take a copy V(v) of V, for any v^V, and identify 

these points v, as in 9* Denote the obtained space by W, its point 

obtained by the identifications of the v's by w. Now, let U be a to

tally disconnected regular space and qlf q2 two its distinct points 

such that, for any continuous mapping f of U into any Tj-space of the 

cardinality smaller than exp ( .K 0 * card Y* card W), f(q^) ~ f(q2)» 
(The space constructed in [Hr] or LGf] has really only one-point com* 

ponenta, q^ and q2 are, of course, in one qua si component.) Z is a sp

ace obtained from a disjoint union of ¥ and U by the identification 

of w and q^. 

11., Let us dhow some "purely topological** immediate consequen
ces of the above theorems. By the last theorem, 

there exists a stiff proper class of regular spaces, in which 

any point lies on an arc* 

Another application: since for any set X there exists Re X x X such 

that the graph (X,R) has no non-identical endomorphism (dee CVPH]), 

any totally disconnected space V can be embedded as a closed 

subspace in a apace X without non-constant non-identical conti

nuous mappings into itself such that card X = 2 ° • card V 

and X is completely regular or normal or paracompact or metrlz-

able whenever 7 has this property. 

Analogously, 

for any space V and any cardinal cc -> card V there exists a 

space X without nonr-constant non-Identical continuous mappings 

into itself such that card X = 2 d « oc , X contains V as a 

closed subspace and X is Hausdorff or regular whenever V has 

this property* 

Spaces without non-constant non-identical continuous mappings into 
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itself are considered in £KBj, where for any infinite cardinal cC 

such Hausdorff apace X with card X * cC ±3 constructed. 

12. The described construction does not "work" for compact spa

ces* Nevertheless, the following theorem holds. 

Theorem. Let V be a totally disconnected compact Hausdorff spa

ce* Then all connected compact Hausdorff spaces, containing V many 

times, form an almost s-universal category. Under (M), they form an 

almost universal category* 

Here, the proof starts from a modification of the almost full embed

ding of (jg^agh)op into Comja, described in ETr-j3. and the "iterated 

glueing" must be done in a different way* The full proof will appear 

in tTrg}, where also the proofs of the previous embedding theorems 

will be given in more detail* 
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II. 

1* In 1957, W. Hanf TH] constructed a Boolean algebra B isomor

phic to B x B x B but not to BxB. The analogoua reeult for Abelian 

groups was proved by A.L. Corner in 1963 (see tCrl). The analogoua 

problem can be investigated in an arbitrary category. Let K be a 

category with finite products. Given a natural number n>3, denote 

by 
IK(n) 

the class of a l l objects X of K such that 
X i s isomorphic to Xx»*»*X (n-times) and Xx . . . * X (k-times) 
i s not isomorphic to X x . . . x X (k'-times) whenever l £ k < k ' . £ 
< n - l . 

Let us consider IK to be the category of topological spaces. By 
LTr^-l, for every n, IK(n) contains a locally compact separable met-
rizable apace. A large part of the method of the proof i s categorial, 
i t admits not only a categorial formulation but also an application 
to other familiar categoriea. Thia i3 done in CTr-jl, where the ana<-
logous result i s shown also for uniform and proximity spaced, graphs, 
small categories and some types of partial algebras and unary algeb
ras* 

2. Now, we strengthen the above result as follows. 

Theorem. Let IK be the category of topological spaces. Let C 
be a class of spaces such that 

(a) C contains a l l metrizable continua; 
(b) £ i s closed under f inite products and countable copro-

ducts ( = didjoint unions as clo-open subsets). 
Then for any n>3 and any X in C there exist 2 ° non-homeomorph-
i c spaces in C n IK (n) such that each of them contains X as a 

un
closed subspace and i t s cardinality i s equal to 2 ° • card X. 

Proof, a) If X i s a space, denote by X° a one-point space, X « 
a Y, Yn+1 « i x A Denote by N the set of al l non-negative integers 
and by U* the aet of a l l functions on K with values in N. Let 
4K(x) I xeNu-£<x>5$ be a countable s t i f f set (see 1.2) of metriza
ble continue. For any A s .# put Kz = TJM (Ktx))^**. By [Tr-jJ, 

(* ) Kj£ i s not homeomorphic to K̂ # whenever JL 4= JL' • 

b) For JL,JL'± ^ define I + I' by U+l')(x) ~ Jl(x) ^ ' ( x ) o For 
A, BcN11 define A + B - * a * b l s * A , b € . B $ . I f n = l , 2 , . . . , put 
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n# A « A +•••+ A(n-times). Let n > 3 be given. By ETr-j] , there exis ts 
a countable set Ac N such that 

(i) for any acA, a(x)4-0 for infinitely many xeN; 

(ii) A =* n. A; 

(iii) if l ^ k < k ^ n - 1, then k .A a k'.A * 0. 

c) Let a space X in £ be given. Put Z =. XxK(oo)f hence Z; e € 
Put 

T « ± i (ZXxKJ, T = JL (Z°xK ) , 
«*,g A 

where JJL denotes coproduct. Let Y (or Y ) be a coproduct of ^rrt co-

pies of Y (or YQ, respectively).. Clearly, Y contains X as a closed 

subspace and card Y ~ 2 ° • card X . Since Y contains ^r copies 

of any Zxx K , Y is homeomorphic to Yn, by (ii). a 

d) Let us notice that anv continuous mapping of K(oo) into K^ is 

constant for any JL e N . Hence YQ consists precisely of all compo

nents C of Y such that any continuous mapping of K(oo) into C is con-
k k* k 

stant» Consequently, Y is homeomorphic to YQ whenever Y is homeo

morphic to Y , l£ki~k .£ n - 1. By (iii), this is possible only when 

k » k'. Thus, the space Y has all the required properties. 

e) Now, we show that there are many such spaces. Let & be © system 

of infinite subsets of N such that card $ = 2 ° and, for any dist

inct SX,S^ 6 $ , Sĵ o Sz, is finite. Let ifrg: N — • S be a bijection. 

Construct Y(S) by means of the spaces 4 K( i|r$(x) >M X ^ N } quite ana

logously as Y by means of 4K(x)| x e N j . By (i) and (*), Y(S1) is 

not homeomorphic to Y(S2) whenever S-̂  and S^ are distinct elements of 

SD « 

3* The conditions (a),(b) are not too restrictive, the theorem 

can be applied e.g. for the class of all spaces, all T-^-spaces, Haus-

dorff, regular, completely regular, metrizable, 6*-compact, realcom-

pact (or E-compact whenever E contains an infinite closed discrete 

subset and an arc), loeally metrizable, spaces with the first or sec

ond axiom of countability, separable (or with a density character eq

ual to a given cardinality) and many others* On the other hand, the 

important class of compact Hausdorff spaces does not satisfy them. 

Nevertheless, the following theorem holds. 

Theorem* For any n£3 and any compact Hausdorff (or compact met

rizable) space X, there exists a compact Hausdorff (or compact metri

zable) space in IK(n) which contains X as a closed subspace. 

Outline of the proof* We may suppose that the given space is m 
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cube (or a Hilbert cube). Construct Y analogously as in the previous 

proof. Let T be a compactification of Y. Since Y is a coproduct of 

compact connected spaces, ye T is in Y iff y has a connected neigh

bourhood in T. Consequently, Y^ is homeomophic to V whenever T is 
k" ' homeomorphic to T (l£ k^k £ n - 1). This is possible only when 

k =-= k'# Thus, it is sufficient to construct a compactification T of 

1 such that T is homeomorphic to Tn. The construction will be given 

in two steps. 

a) First, we choose a homeomorphism h of Y onto Y11 and find 9 compac

tification TQ of X such that the following diagram commutes: 

-* Yn . 

where u 0 i s the embedding and f i s a continuous mapping ( i f g: P~-w 
—> Q i s a mapping, we denote by gn: P1^—* Qn the mapping defined by 
gn (Pl>«"fPn) = ^g(Pi)t«»»>5(Pn)))» Tbis is easy for compact Haus-
dorff spaces; we put TQ • (iY and f i s a continuous extension of 

t 0 * h. Now, we construct a metrizable compactification TQ for met-
rizable Y. Let H be the Hilbert cube, ae : X—*-B an embedding. Defi
ne X : Y —*#T10 ^ b y 

2 k+1 k 
My) -* (*e(y) ,sen(h(y)) , ae11 ( h n ( y ) ) , . . . , * e n (hn ( y ) ) , . . . ) 

«o k 00 n k 

and ^s^H 1 1 * $\A H b y ^ ( V a l » * 2 » ^ J * W ^ ' * ' * >• 
n i 00 n k 

where z±6 YT . Denote R - \ 1 , 2 , . . . , n | . Then any z € ( ^TJ0 Hn ) n can 

be expressed as z a ((Czj j k | j eR k ) Ik = 0 , 1 , 2 , . . . ) I i€R)o Defi-
co k 00 k 

ne a homeomorphism & : (jjlfo H* ) n ^ATI^ RI1 b y e ( z J ~ 

~ ^ 2 i j ,k 1C±9J>« R*fik> I k « 0 , 1 , 2 , . . . ) . One can verify that 

Ctf" * t*)o A = ^ n - h . Then define TQ as the closure of Mt) in 
00 k 

jjjjo H and f as the corresponding domain-range-restriction of 

er- 0 « . 
b) Now, we consider the following diagram. 
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.-Î. 
Ҳy and Җu aгe 

"0,4 * ^ 4 1 * ^ ^ 3 *> *> ^o>-vf 

where YQ = Yf hQ 1 -= h f fQ x « f are as in a) and T i + 1 

* C i » h i + l f i + 2 * ( h i f i + l ) » f i + l , i * 2 
colimits in the category of a l l Hausdorff spaces of the preceding 
chains (hence, T^ i s a compact Hausdorff space; i t i s met-fiz^1® 
whenever T i s metrizable)* The proof that u^ i s a homeomorphism 
of ICJ into TCJ i s omitted as well as the definition of h^4>+i 8 n a 

f ^ + 1 whenever a) i s a limit ordinal (this definition i s ^natural", 
use the fact that Y1+1 » YJ f S ± + 1 = T J ) • A l l h^ fi are homeomorph-
isms of Y^ onto Y^ f a l l f^ ^ are surjective continuous mappings* 
Since a l l the ^ ' s are quotients of TQ$ th is process must stop, i . e . 

f ami mxla* b e a homeomorphism for some ordinal cc 
compactification with the required properties. 

Then T^ is a 

4* The proofs of all the above theorems are based on the stiff 
set-iK(x) | x e N j of non-degenerate continua. Thus, none of the con
structed spaces is zero-dimensional* Nevertheless, the following the
orem holds (the proof will appear in [TK] )• 

Theorem* For any n>3, any Boolean space can be embedded into a 
Boolean space from IK(n)* 

5* Let us sketch a more general setting of the above field of 

problems* Let IK be a category with finite products, let (S,+) be a 
commutative semigroup* Any mapping 

r: S —> obj IK 

is called a representation of the semigroup by products in IK provi

ded that for any slf s^eS, r(s-j + s2) is isomorphic to rtsJx p(sJ 

and r(sT_) is not isomorphic to r(s2) whenever s-^Sg* 

Hence, any object X from K (n) generates a representation of the 
finite cyclic group of the order n-1* In ITr^l, a general method is 

described for the representation of any semigroup exp N^ (here, N^ is 

the semigroup of all functions on M with values in N, exp NM is the 

semigroup of all its subsets) in several familiar categories, includ

ing the category of topological or uniform or proximity spaces* By 

l-.ft.Ot any commutative semigroup S can be embedded into exp N *#ca « 
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Hence, any commutative semigroup S has a representation by products 

of topological spaces. These spaces can be chosen to be coproducts 

of continua, by tTr,-l, or coproducts of Boolean spaces, by [AK]. The 

result3 presented in I. of this paper imply the following assertions 

as an immediate consequence. 

Given a T-^-space X (or Hausdorff or regular), any commutative 

semigroup has a representation by products of T-^-spaces (or 

Hausdorff or regular) containing X many times. 

Given a totally disconnected Tichonov space X, any commutative 

semigroup has a representation by products of Tichonov spaces 

containing X many times. 

The method, used in II.2, can be used to prove easily the following 

assertion* 

Let C be a class of spaces containing all continua and closed 

under finite products and arbitrary coproducts. Let X be a spa

ce, let <C (X) be the class of all spaces from C , which cont

ain X as a closed subspace. If (D(X)^(Zf, then any commutative 

eemigroup has a representation by products of spaces from the 

In [AK1, the semigroups (exp N ) are represented by products such 

that only countable products of spaces of the basic system -tK(x) I 

x e N x M ? are used. This makes it possible to represent the class of 

all semigroups, embeddable in (exp N ) for some set M, by products 

of metrizable spaces. This class of semigroups contains all Abelian 

groups* Thus, the method of CAK] and the results presented here can 

be used to prove easily the following assertions. 

Given a totally disconnected metrizable space X, any Abelian 

group has a representation by products of metrizable spaces con

taining X many times* 

Let C be a class of spaced containing all complete metric se

mi continua and closed under finite products and arbitrary co-

products. Let X be a space, € (X) the class of all spaces from 

C which contain X as a closed subspace. If (D(X)4-0, then any 

Abelian group has a representation by products of spaces from 

<D(X). 
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