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RECENT DEVEЮPMENT OF TH.EORY OF 
UNIFORM SPACES 

Zden k Frolík 
Math. Inst. of the Czechoslovak Academy of Sci. 

Žitná 25, 11000 Praha 1 

Since the 4th Prague Symposium there has been a fast dev lop-

ment of the theory of uniform spaces. Many old problemэ have been 

зolved, and the зolutionз have opened new aґeaa. Here I want to re-

port juзt on two subjectэ: some sort of non-separable descгiptive 

theory (cozero-setз, Baire setз etc.) and meaэure theory. ìßy inteг-
eэt in uniform spaceэ originated in these two subjectз. The prelim-

inary introduction to uniform methods in descriptive theory waз gi-

ven in my talk on the 4th Prague Symposium and more definite pгog-

гam was intгoduced in my talks on conferences in Budva [F
2
, 1972], 

Athens (Ohio 1972) and Pittsburgh [F-j, 1972]. A great help for me 

was the work of A.W. Hager; he waэ primarily intereзted in lattic-

eз of functions, however, he introduced to uniform spaceэ one of 

the moэt us ful constructions (described in § 1 as % - c), and in 

the separable caзe obэerved that hereditarily metric-fine implies 

that the cozeгo setэ foгm a & -algebra. Alэo the work of F. Hanз-

ell on б' -discrete decomposability of disjoint completely Suзlin-

additive familieэ in complete metric зpaces (proved now by P. Hol-

ick and the pгesent author for pгoducts of complete metric spaces 

by compact spaces) waз basic for considering the program. 

As conc rns the measure theory on uniform зpaces, introduced 

by D.A. Rajkov and independently by L.LeCam, one should conзult 

[FдljCFclfC-Pg] and recent papers by J. PachІ where one can find 

complete bibliography. 

In 1973 I эtarted a зpecial зeminar on uniform зpaceз which 

was attended from the very beginning by зeveгal graduate зtudentз 

who put a lot of will-power and enthusiaзm in the work of the зemi-

nar. The results are published in seminar noteэ SUS 73-4, SUS 74-5 

(very informal), and SUS 75-6 where one can find the đetails of all 
resultз presented here, and also references. In particular, SUS 73-4 

contains a long survey of the material connecteđ with cozero, Baire 



etc. sets and functions. 

Unifoгm spaces theory could have always been attгactive becau-

se of its conceptual value for topology, geometгy and analysis. Un-

fortunately, difficult technical proceduгes were quite exceptional, 

and the answers to questions coming fгom the other fields seemed to 

be just formal reformulations which did not focuse on the pгoblemэ. 

I feel that these days the theory of uniform spaces has its deep 

parts, anđ what is importaпt, is giving the answers with "comments" 
which may be useful. 

Let me just mention several gгoups of pгoblems which aгe open 

foг further investigation: 

A. Uniform isomorphism problem for locally convex linear эpac-

es: are any two uniformly isomorphic spaces isomorphic as topologi-

cal linear spaces. It seems that no contra-example is known, howev-

eг a number of гesults in positive diгection has been given (Unflo, 

Mankiewicz, Vilímovsk ). 

B. The complexity of uniform coveгs in generał, in particular, 
the complexity of uniform covers of Banach spaces. The first non-
trivial r sult is due to M. Zahradník, SUS 73-4, who showed that 
the uniform structure of no infinite-dimensional normed space is 
generated by Л ̂ -contiшous partitions of unity. J. Pelant has dev-

eloped a theory of combinatorial complexity of uniform covers using 

new technical tools, and the recent examples of spaces without po-

int-finite basis due to V. Rođl and J. Pelant are very simple, how-
ever they are using more involved combinatorics (it should be men-
tioned that the first examples are due to Sбepin and Pelant). 

C. Lattices and ordered sets of uniformities. Many results on 

atoms have been published by J. Pelant, J. Reiterman anđ P. Simon. 
In uniform spaces these topics aгe more complicated than in topolo-
gical spaces, however ultгafilters play an important role. 

D. The category of uniform spaces is quite interesting from 

the categorial point of view. Here I want just to mention that one 

is forced to use functors to be able to say something non-trivial 

and reasonable about various concrete problems; e.g. note the role 

of the pluә and minus functors in what follows. Two classical facts 

are used frequently (Isbell, for the second also tЬЗ): 

(1) every uniform space can be embedded into a product of com-

plete metгic spaces which can be chosen injective* 

(2) every uniform space is a qüotient of a н
devil space

w D(íГ): 

# is a filter, say on a set X, the underlying set of ЪCУ) is 
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Zx X, and the uniformity of D(&) has the following covers U^t Fe 
e T 9 for a basis; %^ consists of all singletons < 0,x> and 

< l,x> for x£F, and all two-point sets 4< 0,x> , <l,x>J for xei\ 

It should be noted that the usage of the devil space was deve

loped by M. HuSek. 

E. Spaces of uniformly continuous mappings into topological 

linear spaces, in particular, into the reals. Two problems have 

been studied, existence of extensions and stability of the spaces 

with respect to the pointwise defined algebraic operations. In the 

real valued case J. Pelant, J. Vilfmovsk^ and the present author 

showed that the two problems are connected, and they described the 

largest coreflective clas3 with the extension property. The general 

case has been studied by J. Vilfmovsk^ who showed that the situati

on is more complicated; the definite answers are not known. It 

should be noted that many result3 are implicitly contained in the 

literature on geometry of Banach spaces. 

Now we are coming to the proper subject of my talk. The res

ults will be stated in the terminology described in § 1* 

§ 1. Notation and basic constructions. 

We start with a description of three constructions which will 

be used frequently in describing various functors. 

A. If <C is a coreflective class of uniform spaces (closed 
under sums and quotients, and, f co rse, isomorphisms) then the 

class sub *£ consisting of subspaces of spaces in <£ is corefle

ctive, and if c is the coreflection on <€ then subc stands for 

the coreflection on sub K • Moreover, the functor subc is evalua

ted as follows: if X <^—* Y, and if Y is injective, then subc X c_* 

c—^ cY. This general result is formulated by J. Vilimovsk^, the 

method was invented by J. Isbell who used it in the case of topo-

logically fine spaces (the method was also used by M. Rice for me-

tric-tf spaces). 

Remark. It is natural to ask the following question: Under 

what conditions the product of two spaces in a coreflective class 

<£ belongs to *€ ? The problem was opened by J. Isbell and Polja-

kov for the case of proximally fine spaces, and reconsidered by V. 

Ktirkovd by showing "yes" if one of the spaces is compact (or more 

generally, precompact). Her work was followed by nice results of M. 

HuSek, recently jointly with M. Rice, in general setting. 

B. If % is a coreflective class then the class her *t of all 
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X such that each subspace of X belongs to <£ does not need to be 

coreflective (e.g. take (A.D.) Alexandrov spaces for *6 ). However, 
if it is, then her c denotes the corresponding coreflection provid

ed that c is the coreflection on *£ • 

C. X - c spaces. Let % be a class of spaces, and let c be a 

coreflection. The class 3C - c consists of all Y such that if X 6 

€ 9E - and f: Y— > X is uniformly continuous, then so is f: Y — > 

—1> cX. This construction was introduced to uniform spaces by A. Ha-

ger# 

The rest of this § is devoted to constructs associated with 

the concept of "refinement" introduced explicitly in CF3] . If JC 
is a category (always concrete) denote by Set^ the category on 

objects of % such that Set^(X,Y) is the set of all mappings of X 

into Y# Here 3£ is usually the category U of uniform spaces. A re

finement of % is any category between X and Set^ . The follow

ing sequence of refinements of U will be used frequently: 

U <-—̂  S> c—* p <—> coz c—> t <=—> Set-j. 

Recall IF 1 that <2>(X,Y) is the set of all distal mappings from X 
into Y (the preimages of discrete collections are discrete),p(XtY) 

is the set of all proximally continuous mappings from X into Y, 

coz (X,Y) is the set of all coz-mappings of X into Y (preimages of 

coz-sets are coz-sets, the coz-sets are preimages of open sets un

der the uniformly continuous functions), and t(X,Y) is the set of 

all continuous functions of X into I. 

It should be remarked that every concrete functor of 3C into 

any category defines a refinement, and every refinement is generat

ed in this way. 

Indeed, if L: 3C — > ^& is a concrete functor define a refi

nement 31 j^ as follows: 
rEL(X,Y) =- S£(LX,LY). 

Usually we write L for %y> For example, t is the usual functor of 
U into topological spaces, which assigns to each uniform space the 

induced topological space. Similarly for the functor p of U into 

proximal spaces. The refinement coz may be defined by the functor 

coz into paved spaces: coz X is the set X endowed with the collec

tion of all coz-sets in X. On the other hand, if Sfc is a refinem

ent of % , then £ is generated by the obvious functor of X in

to the category <3C >\* defined as follows: the objects are the 

equivalence classes under the relation'X and Y are isomorphic in 
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% under the identity mapping of X onto Y; the equivalence class 
containing X i s denoted by < X \ - . 

Remark. In general, the approach to the refinements by means of 
functors into other categories has many advantages, e .g . simplicity. 
On the other hand, there are natural refinements "from l i f e" , e .g . 
the refinement in the § on measure theory. 

Consider a refinement U «=—> St . Denote by Inv (it) (more pre
c ise ly , Inv (U <-—* X )) the class of a l l concrete functors F: U—* 

—*> U such that X and FX are isomorphic in 56 by the identity map
ping.; these functors are called fi& -preserving. Denote by Inv+(6£) 
or InV_(S6) the class of a l l positive or negative functors in 
Inv(££), accordingly. Recall that a functor F i s called positive 
(negative) i f the identity mapping X—• FX (FX—> X) i s uniformly 
continuous for each X. Note that concrete reflections are just the 
idempotent positive functors, and similarly for corefleetions. 

If there exists the coarsest functor in Inv^(£G), i t i s called 
the plus-functor of it and denoted by it+. Similarly, ££_ i s de
fined. We say that i£^ i s strong i f St + i s the coarsest element 
in Inv ( & ) . Self-evidently the plus and minus functors are idempo
tent . 

Before discussing the properties of • and - functors, le t me 
recall the concepts of fine and coarse objects. An object X i s cal
led # - f i n e i f 

U(XfY) * #(X,Y) 
for each Y. If the relation i s sat isf ied for a l l Xf then Y i s ca l l 
ed it -coarse. 

The class of a l l 06 -fine objects i s coreflective (easy),and 
the corresponding coreflection i s denoted by itf Similarly, the 
reflection on it -coarse objects i s denoted by %£c. It i s easy to 
show that the following three conditions are equivalent: 

1. o£ £ = it. • 

2* Xf preserves it ( i . e . %, £ e l n v ( i 6 ) ) . 

3 . &„ generates it ( i . e . S6(X,Y) =* U(&ejCf &J[)). 

I f the three conditions are sat isf ied then i& i s called fine ( this 
i s equivalent to the statement that U i s ref lect ive in it ) . Simi
larly for "coarse". 

Classical simple results say that p i s coarse, and t i s f ine . 
It i s easy to show that t + = p (strong), and i t follows from the 
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fact that p(XxX) uniquely determines X, that p_ is the identity 

(strong). 

It is interesting that sub p£ is the identity (Hu&ek, Vilimov-

sk^), and in November 1976 J. Pelant (with certain help of P. Pt6k) 

showed that sub t^ is the locally fine coreflection, solving an old 

problem of J. Isbell. 

It is shown in lF^J that 3) is coarse. Note that «0 and re

lated larger refinements have been studied by P. Pt^k. 

The rest is devoted to several refinements related to descri

ptive theory and measure theory. 

§ 2. Refinement coz . 

Simple examples show that coz is neither coarse nor fine. It 

is easy to show that coz is the reflection on the indiscrete spa

ces. For many results on coz^ we refer to SUS 73-4, and SUS 74-5. 

Here I want just indicate the results on +• and - functors. If S6 
2 is a refinement, denote by X the refinement consisting of all 

f: X — > Y such that f x f : X x X — * Y x Y is in X . 

Theorem, coz. == (coz ) f -= metric - t^. The functor coz,. is 

evaluated at X as follows: 

a. The coz-sets in Xx X containing the diagonal form a basis 

for the vicinities of the diagonal of coz^X, 

b. £"-discrete completely coz-additive covers of X form a ba

sis for the uniform covers of coz_X. 

There is no reasonable description of the morphisms in coz_ 

except for the one in Theorem, the obvious conjectures fail to be 

true. It should be remarked that M. Rice found independently a 

description of metric-t- similar to that in (b). The present aut

hor characterized metric-t^ spaces by several other properties 

(&oo -partitions are X-^, uniformly continuous maps into metric 
spaces are preserved by taking continuous limits). It seems that 

coz_ is one of the most useful functors. 

It is obvious that coz.X st coz.JC iff coz_X is proximally fine. 

By general method (M. Rice, see A in Introduction), or directly one 

can show 

sub coz_ = (complete metric) - t^, 

and it follows from the factorization theorem of G. Tashjian (coz-

mappings of products into metric spaces factorize through countab

le sub-products) that 
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sub coz_ a sub coz^. 

Very useful is the coreflection her coz_ , which is called the 

measurable coreflection. A space X is in her coz„ iff it is in coz_ 

and coz X is a & -algebra iff uniformly continuous mappings into 

metric spaces are closed under taking of pointwise limits of sequen

ces. 

It is easy to show that coz+ = p, and it can be proved that 

(cozj^ - 3> . 

§ 3. Refinement h coz . 

The hyper-coz sets in a uniform space are the elements of the 

smallest collection of sets which contains all coz-sets, and it is 

closed under taking ^-discrete unions. The hyper-coz mappings are 

defined obviously. The properties of the resulting refinement h coz 

are similar to those of coz, however the proofs are more involved. 

Clearly 
U c-—> h coz c—y t, 

and neither cozch coz nor h coze coz. 
i \ 

Theorem, h coz_ - (h coz ) £ » coz.. ° & = coz.. o sub t f . In 
addition, h coz.. i s evaluated at X as follows: the hyper-coz sets 
in X X containing the diagonal form a basis for the vicinit ies: of 
the diagonal. 

Corollary, sub (h coz_) - sub t£ . 
It follows from Theorem that to evaluate h coz. at X i t i s e-

nough to know coz AX = h coz X, and 3>c ° & X. The distal struc
ture of A X may be much finer than that of X. Therefore another 
functor is of certain interest , namely (metricx compact) - t^. This 
coreflection is evaluated as in (b) in Theorem in § 2 with coz re 
placed by h coz. 

It can be proved that 
h coz^ = (h coz_)+= 3) • 

§ 4* Refinements Ba and h Ba. 
The Baire sets in X are the elements of the smallest &-algeb

ra containing the coz-sets. The hyper-Baire sets in X are the elem
ents of the smallest G -algebra containing the coz-sets, and clos
ed under discrete unions. The set of a l l Baire-measurable mappings 
of X into Y, called simply Baire mappings, i s denoted by Ba (X,Y). 
Similarly h Ba (XfY) stands for the set of a l l hyper-Baire mappings 
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of X into Y. The properties of the resulting refinements Ba and hBa 

depend on the model of set theory used, and the absolute results I 

know require quite deep properties of Suslin sets. Obviously 

U c—^ coz *•—> Ba c—> Set-j, 

U <=—-̂  h coz c-^ hBa «-—> Sety, 

and i t i s easy to see that Ba and hBa are unrelated. Also Ba+ = pf 

and hBa+ - 3> • Certainly, none of the two refinements i s coarse or 
f ine . 

It can be shown that Ba_ and hBa.. ex is t , however no descript
ion i s known, and we shall see that the evaluation of the two func
tors at metric spaces depends on the model of set theory used. The 
absolute resu l ts are: 
A. BSfX « BaJC =- her cozJC 

i f X is a complete metric space. 
B. hBâ X » hBa_X =. her (compactx complete metric - t^) 

i f X is the product of a compact space by a complete metric 
space. 

It is easy to show that A holds for a l l separable metric spa
ces under CH, and A does not hold for QcR (an uncountable subset 
of the reals such that each subset of Q is a G^ f in particular, 
Ba Q i s the power set of Q)» J . Fleisner has announced a resu lt 
which implies that A is consistent for al l metric spaces of cardi
nal 4 <^1} and A holds for a l l metric spaces in a model. 

For the proof of the absolute resu l ts one needs to know the 
following Lemma which was proved recently by P# Holick^ and the 
present author: 

i f X i s a hyper-analytic space, in particular, i f X i s the 
product of a complete metric space by a compact space, then every 
disjoint completely Suslin-additive family in X is ^ - d i s c r e t e l y 
decomposable. 

It should be remarked that for A one needs the case when X 
i s complete metric, and this case is due to F. Hansell. Recall 
that 4 XQ$ i s C -discretely decomposable i f there exists a fami
ly 4 XQ n ? such that each i XQ n $ a i s discrete, and XQ » 
- U - { X 0 l n € C i > 3 . a,n 

For A one needs also a Lemma due to D. Preiss: every disjoint 
completely Baire-additive family i s of a bounded class . 

The statements of the categorial consequences are le f t to the 
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of flft-j(X) into E. Clearly T/tjjiX) is uniquely determined up to an 

isomorphism preserving cT . Clearly every f 6 U(X,Y) extends uniqu

ely to a continuous linear map ^-j(f) of 'Wt-j(X) into ^-j(Y) ,thus 

7/1 -j is a functor. The elements of 73t-j(X) are called uniform mea
sures on X. 

It is not difficult to show that ffljj(X) can be identified 

with the set of all (U e /2?fc (X) which are continuous in the point-
wise topology on each UEB set, endowed with the topology of uni

form convergence on UEB sets. The embedding cT assigns to each 

xe X the evaluation at x, i.e. the Dirac measure at x. One can 

show that the set Mot (X) of all molecular measures, i.e. the li

near space generated by Dirac measures, is dense in 7/l^X). Thus 

7/1 -j(X) is a completion of Mx>t (X) endowed by the topology of u-
niform convergence on UEB sets. The topology of Wfc-j(X) is called 

the uniform topology. The linear space Ufe(X) is the dual of 

$T-j(X), and what is important for our purposes, on the positive 

cone WfLyiX) the uniform topology coincides with the weak topolo
gy ( =* ercmjjU)9uh(x))). 

The concept of uniform measure may be useful for measure the

ory because uniform measures are preserved by projective limits, 

6 -additive measures defined on & -algebras and also cylindrical 
measures can be viewed as uniform measures. One can define vector 

valued uniform measures, and develop a nice theory of integration; 

the basic result for this purpose is a recent theorem of J. Pachl 

which says that relatively weakly compact subsets of U&-j(X) are 

relatively compact. It is natural to ask whether some questions 

about uniform measures can be reduced to consideration of uniform 

measures on very simple uniform spaces. One problem of this sort 

is considered here. 

What can be said about negative functors .P of uniform spaces 

such that the middle vertical arrow in the diagram 

x c ^ m Zix) *—* awTT(x) 

t t' t 
is a homeomorphism. The answer is that there exists the finest one, 

and the refinement M> of U generated by the finest one can be de
scribed as follows: 

f e JH(X,Y), iff JM*(£) extends 

to a continuous mapping of Ht^iX) into Wt^CY). 
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Of course, JHx£,*(t) ia the restriction to MJOI*(X) of the ex

tension Mci(t) of f to a linear mapping of Mot(X) into Mot(Y). 
I don't know any direct proof. In my proof one consider3 at 

the same time a functor by means of playing with "true" Radon mea

sures, and working with both M and the functor constructed one 

finally shows the proposition about M , and proves that the func

tor is M£» The construction of JtL£ is based on the following de

scription of uniform measures tFgl : 

a measure (A, e Tit (X) is uniform iff (U, is sitting on K(^) 
as a Radon measure for each uniform cover % of X. 

Here K(%) is the union of closures in X of the elements of 

U • 
Remark. This description implies that on a complete metric 

space the uniform measures are just the Radon measures. 

The de3cription of M£* 

M£ is X endowed with the coarse3t uniformity such that all 

the identity maps 

M fX. —* t£U 
>/ 

are uniformly continuous, where U runs over all Uc X such that for 

each uniform measure (tt onX the measure /U is sitting on U as a 

Radon measure. 

The spaces M^X have good properties. They are locally fine 
(but M£+ % ), and & -additivity of all uniform measures on X 
is de3cribed by simple properties of X as follows. 

Theorem. The following propertie9 of X are equivalent: 

1. Each uniform measure on X is 6 -additive (i.e. f n^0, 

fneUb(X) «=> (U,(tn)—*0). 
2. M^X is metric - t£ (i.e. coz_ M^X = M^X). 
3. M^X i3 inversion-clo3ed (i.e. if f >0 is a uniformly con

tinuous function then so is 1/f). 

4. If fn4>0, and {f n}c Ufe( M^)f then 4fn$ is UEB. 

Remark. The properties 3. and 4. are always equivalent (M. Zsr 

hradnik, SUS 73-4). 

The details of § 6 will appear in SUS 76-7, see also [F61 . 

It is an open problem whether there exist3 a non-trivial po

sitive functor F 3uch that the middle vertical arrow is an analo
gous diagram is a homomorphism (even a bisection). 
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