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FOURTH WINTER SCHOCL (1976)

DECOMPOSITIONS OF ADJOINT SITUATIONS

by
M. BUSEX

As it is Xnown, reflections and coreflections are spe-
cial cases of adjunctions, The (adjoint) composition of re-
flections is again a reflection and sirilarly for coreflec-
tions. Clearly, the composition of a reflection and a core-
flection (or in the converse order) need not be either re-
flection a coreflection. What are the adjunctions which
can be expressed as such compositioms?

Theorem 1, Any adjunction (9,g): F— G: (4,B) is
a composition of a full monoreflection (lg,%): J,— C:

: (€,%) and a full epireflection (g 1y ): R—Jdy:(Q,92).
The 94 is epi iff & is epi (i.e., iff G is faithful) and ¢
is mono iff % is mono (i.e., iff F is faithful).

An adjunction (g ,e¢): F— G is called normal, if 7G
is iso (i.e., if Gll'ar“q GF or if Ps is iso or if GeF is
iso, etec.). ‘
lloreover, we can prove that (9,2 ) ia not normal iff no pro-
longation of ]’}—b@' contains an iso (by a prolongation of
the 4 we mean any left-continuous functor ¥ on ordinal
mmbers into functors B —» P with 2(«5,_&4- 1> =
= (GF)" n ¥ (B) for ann <w,, = < - n); the same for ¢ .
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Theorem 2. An adjunction is isomorphic to a composi-
tiom of a full coreflection, an squivalence and a full re-
flection iff it is normal, The coreflection is wono iff the
counit is mono, and the reflection is api iff the unit is
epi.

" A8 in the case of epireflective hulls one may nowsprove
the existence of adjoint hukls if we restrict ourselves to
adjunctions with the umit dbeing epi {(thus the adjunctions
are normal).

Denote by FUNC the metacategary the objcts of which are
functors into categories with coimtersections and terminal
obje cts, and morphisms G —>G’ are pairs {K,H > with:

HG = G’K, if G is full and faithful in A from the left, then
G’ is full and faithfull in KA from the left, and

H Lepirefl GCAJ ) c epirefl G'CQ’1 . (For the existence
of epireflective hulls it suffices that the category has co=-
imtersections and is cowall -~ pawered.) Denote y ADJ the full
sub-metacategory of FUNC generated by those functors which
are right adjoints (if g: 9; — 33 are objects of ADJ,
{i are the corresponding categories epireflective im By
end coreflective in @, then {K,H): G;—> G, iff HGy =
= G,K and E/.el = K/qlz Q—r<,).

Theorem 3., ADJ is reflective in FUNC.
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The condition on préserving ﬁpd.refleetive hulls cannot
be omitted (in that case the “"reflection® has not the exten-
sion property); it is fulfilled it H is right eontimmous on 4
complete categories. If we omit the condition on preserving
"full and faithful left objects®, then the "reﬂecf.iun" has
the extension property but not unique. We may change ths equ~
ality HG = G'K to a tramnsformation % : HG ~» G’K (then mor-
phisns are triples { K,H, % > ); in this case we also loss
unicity.



