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FOURTH WINTER SCHOOL (1976) 

K f - BOOTEES* SETS AND FILTERS OR CO 

by 

A. lOOVEAU 

Abstract* We show how a property of "amallness" of sub­

sets of <o can be used to prove combinatorial result 

on filters of cj • 

~ A set A c. GJ is said K^-bounded if there ex­

ists a K^ subset B of C9 (countable union of compact 

subsets of cd** ) with Ac B. . 

The family of Kg--bounded subsets of cOa is a <T-

ideal, and each non empty open set is not in it. 

- Define, for F closed subset of Oa , F is super-

perfect if no non empty relative open set in F is relative­

ly compact. By a derivation analogous to Cantor classical 

derivation, it can easily be proved that each closed F is 

the union of two disjoint sets F# and A, F' being euperper-
r 

feet (or 0) and A K^-bounded (and this partition is uni­

que ). 

It follows that each .closed F satisfies the property (jfc ) 

(#-) F is K^-bounded or contains a superperfect set 

Theorem 1 (Kechris, S Raymond) 

let A C 0 ° be analytic. Then A satisfiea (*>)• 

This theorem can be extended to the following: 
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Theorem 2. 1) It is consistent with ZFC that all PGA. 

sets satisfy (#) 

2) It is consistent with ZF * DC (assuming the consis­

tency of ZP + there is en inaccessible cardinal) that all 

subsets of 6L> satisfy (*)„ 

We use now these theorems in the case of filters on. CO 

- A filter & on &) is free if it contains the Fr6-

chet-filter JC • Then ^ is a subset of ZCJI , and when 

this space is equiped with the topology induced by 2 6\ , we 

can speak of topological properties of filters. Moreover, as 

£a>l is homeomorphic to ca** , we can apply the pre­

vious results. 

Theorem 3. Let f be a free fillter on O , and F be 

a closed (for the topology of C o l 0 ) subset of *5r . Then 

P is a K£-set. 

Corollary. 1) Every free analytic filter on CO is 

Kg -bounded in C CO H6* 

2) Analogous statements of consistency follow from 

Theorem 2 

Theorem 4. Suppose £ is a K^ -bounded free filter on 

co # Then there exists a finite-to-one function, h: co —> O 

such that h(y) * JT . (**) 

Definition. & is said to be rare if for each parti­

tion of co into finite sets, there is a selector of this 

partition which belongs to f . 

3* is said to be rapid if for each increasing sequence 
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(aJ1)n of natural numbers, there is an F 6 & t such 

that if XJJ is the n member of F, then y n ^ ^ ^ n • 

Proposition. If a free filter on CJ satisfies (*c*Ot 

it is not rapid, hence not rare. 

Corollary. 1) No free analytic filter on o> is rare 

(Math i as ) 

2) Analogously, consistency statements follow from 

Theorem 2. 

A paper on this subject will appear in the "Comptes-

rendus du CongrSs International de Logique de Clermont-Fer­

rand, Juillet 75". 


