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FOURTH WINTER SCHOOL (1976)

GAUSSIAN MEASURES ON L SPACES, 0& p < co

by
Tomasz BYCZKOWSKI

Let E be a real separable metric linear ‘space, and let
(L, 6,P) be a probability space. A mapping X from L to E
is called a random element (r.e.) if it is measurable rela-
tive to the Borel 6 -algebra B in E and 6 -algebra 6 in
Qo '

A random element X is called Gaussian if Por every inde-
pendent r.e.’s X,, X, with the same distribution as X, the .
r.e.’s X, + X, and X, ~ X, are independent.

This definition has been used by Fréchet as one of two
equivalent defi_nitioxs of Gaussian random elements with vg-
lues in a Banach space., This definition allows \is to consider
Gaussian random elements in métric linear spaces which admit
no nontrivial continuous linear functional.The best known ex-
amples of such spaces aré I.ps Ib(m) epaqes, where m is the
lebesgue measure on [0,1] amd 0<£p<1l., Of course, in such
spaces the classical definition of Gaussian rsndom elements
by' means of characteristic functional cann& be used. If the
Borel 6 -algebra in E is generated by all continuows line-
ar functionals on E (for instance, if E is a separahlé Banach

space) then this definition agreesv with the usual om: a r.e.
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X is Oaussian iff for évery .eontinuous lirear functioml f
on E f(x) is a real Gaussian random variable.
Now, ‘let (T,% ,m) be a finite measure space., Let us as-
sume that the Frécﬁet-ﬂikodym space is separable. Let
' Lo = Lo(m) be the set of{all equivalence classes of real

functions that are defined on T and that are ¥ -measurab-

le, with the norm

Bxi, = —x®l e
= [ ST .

and let LpE Lp(m) be the subset of all x €L, whose p-th po-

wer is m-integrable with the norm
3
Axl = (f Px(1P meae)

where X = min (1,1/13).

Now we aﬁall need the notion of the measurable stochast-
ic mrocess. A.

Iet {g (t); teT } be a stochastic process; it is
said to be measurable if the mapping g from £l % T into R
defined by (Q,t) > f (@ ,t) is measurabl with respect to
€x ¥, Now, - htussuppose that §(w, «)el P - a,e,

P
Let f : L —> Ib be the mapping defined as follows

' (arye) i (@, )
?mu{g : ﬂ,? e
5] if g(w,.)f:.p

By the measurabilxty of E amd separabllity of Lp it
follons that g is a r.e. The probabili.ty distribution of

f will be denoted by (-Ug.
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We say that a.'strochastie > ocess f is Gaussian if
there is T & §  such that m(T)) = O end for every t,,
tz,...,tke r\'ro

<§ (t)yeeey  F (4 )) is a Gaussian random
vector. ' '

It - seems to be interesting that there is a correspon-
dence between Gaussian measures on Ib spaces and Gaussian
measurable processes with sample paths in I.p. Namely, the
following holds:

Theorem 1. Let @ be a pmbgbility measure on I.p spa-
ce, O4£p = 00 . Then there is a measurable stochastic pro-
cess [g (t),t€T] with the.aample paths in L, such that
‘“E = @ . Moreover, if w is Gaussian then g is Gaus-
sian, On the other hand, if Ef(t), teT1 is a Gaussian
measurable stochastic process with the sample paths in lb .
then @ § is Gaussian.

In the probability theory it is always convenient to con-
sider finite-dimensional rather than infinite-dimensiomal dis-
stributions. There are some impar tant cases in which this re-
duction can be done, .

Ore of them is C [0,1] space (of all real continuous
functions defined on the unit interval with the supremm
narm). It is well known that every probability measure on
C [0,1] is completely determined by the finite—di_.mensioml
distributions.

The second is D [0,1] - the space of all real functions
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‘without discontinuities of the second kind.
There is one more example of suéh situation; this re-

sult seems to be new.

Theorem 2. let @, and o be two probability mea-
sures on Lp spaces. lLet §(1), E(Z) be two measurable sto-
chastic processes inducing @31 ¢, respectively. Then

@vy = .(4p iff there exists T € & such that m(T,) = O

and that if Lyseeerty € A To then the random vectors

My, gy 0 P, g P00
have the same distributions.
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