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FOURTH WINTER SCHOOL (1976) 

GAUSSIAN MEASURES ON L SPACES, 0̂ > p < oo 

by 

Tomasz BXCZKOWSK1 

Let E be a real separable metric linear space, and let 

(II, 6 ,P) be a probability space. A mapping X from SL to E 

is called a random element (r.e.) if it is measurable rela­

tive to the Borel S -algebra £ in £ and £-algebra f> in 

XL . 

A random element X is called Gaussian if .tor every inde­

pendent r.e. 's X-p Xg with the same distribution as Xt the 

r.e.'s X.̂  + X-> and X.̂  - Xg are independent. 

This definition has been used by Fr^chet as one of two 

equivalent definitions of Gaussian random elements with va­

lues in a Banach space. This definition allows us to consider 

Gaussian random elements in metric linear spaces which admit 

no nontrivial continuous linear functional*The best known ex­

amples of such spaces are --u«s l-wOa) spaces, where m is the 

Lebesgue measure on C0,1] and 0.£p<l» Of course, in such 

spaces the classical definition of Gaussian random elements 

by means of characteristic functional cannot be used* If the 

Borel €f-algebra in E is generated by all continuous line­

ar functionals on E (for instance., if S is a separable Banach 

space) then this definition agrees with the usual ora : a r.e. 
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X is Gaussian iff for every continuous linear functional f 

on .£ f(X) is a real Gaussian random Variable* 

Now, let (Tf^,m) be a finite measure space. Let us as­

sume that th£ Prechet-Nikodym space is separable• Let 

L s L (m) be the set of all equivalence classes of real 

functions that are defined on T and that are ST-measurab­

le, with the norm 

ы - r •-•(->• 
0 J

т 1 + ţ x ( t ) 
- m(dt) 

+ U ( t ) | 

and let L S Iu(m) be the subset of all x € L 0 whose p-th. po­

wer is m-integrable with the norm 
Ixll p - ([ |x(t)l

pm(dt))* 

where X- = min (1, /p). 

Now we shall need the notion of the measurable stochast­

ic process. 

Let «f C (t)f t€T { be a stochastic process; it is 

said to be measurable if the mapping £ from XL x T into R 

defined by (C0,t) i—-v £ (o ,t) is measurable with respect to 

6 x & 9 Now, let us suppose that J (co , • )e L P - a.e. 

Let b : SL —•*» X, be the mapping defined as follows 

l O if Ç (û», . )ţ Iþ 

By the measurability of £ and sei>arability of I* it 
r* * p 

follows that ? is ar.e. The probability distribution of 
rJ 

£ will be denoted by £*/- • 
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We say that a strochaatic process 9 is Gaussian if 

there is T Q £ £* such that B-(TQ) « 0 and for every t-,, 

tp > * • * f ̂ v * * ' O 

(Eft-,),..., F (*iĉ  is a Gaussian random 

vector. 

It seems to be interesting that there is a correspon­

dence between Gaussian measures on L spaces and Gaussian 

measurable processes with sample paths in II. Namely, the 

following holds: 

Theorem 1. Let AL be a probability measure on J*^ spa­

ce, 06 p -* CO . Then there is a measurable stochastic pro­

cess C | (t),tcT] with the sample paths in 1^ such that 

/tfg = QJL, • Moreover, if fi/ is Gaussian then C is Gaus­

sian. On the other hand, if Cf (t), t £ T l is a Gaussian 

measurable stochastic process with the sample paths in J^ 

then /Uf is Gaussian* 

In the probability theory it is always convenient to con­

sider finite-dimensional rather than infinite-dimensional dis-

stributions. There are some important cases in which this re­

duction can be done. 

One of them is C CO, 11 space (of all real continuous 

functions defined on the unit interval with the supremum 

norm). It is well known that every probability measure on 

C CO, 13 is completely determined by the finite-dimensional 

distributions. 

The second is D TO,!] - the space of all real functions 
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without discontinuities of the second kind. 

There is one more example of such situation; this re­

sult seems to be new. 

Theorem 2« Let (&-j and At** De t w o probability mea­

sures on L spaces. Let £ , C*z? be two measurable sto­

chastic processes inducing fb^t At^. respectively. Then 

(̂ 1 s (^2 ***" there exists T c $ such that ia(T0) =- 0 

and that if t1,...,tJc€ TN T then the random vectors 

<f(1)(t1) f(1)<v> . <| (2)<v f(2)(V> 
have the same distributions. 
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