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POURTH WINTER SCHOOL (1976) 

A NEW RESULT OP G.A. EDGAR ON REPRESENTING POINTS IN A CONVEX 

BOUNBEB SUBSET OP BANACH SPACES WITH THE RtUTCN-NIKODYM 

PROPEBTT AS BAHTCENTRES OP RADON MEASURES 

by 

P. MANKIEWICZ 

A well-known theorem of Choquet states that if K is a 

convex metrizable compact in a locally convex space then for 

each xeK there exists a Borel measure M, supported by the 

set Extr (K) (i.e. extremal points of K) such \hat 

x a JT Id &M, (Id stands for identity map). 

Two years agof Edgar proved the following 

Theorem: If K is a convex closed bounded subset of a 

Banach space with the-RNP then for each xgK there exists a 

Borel measure /a, supported by Extr (K) such that x -

* JKId d^t 

The case when K is non separable remained open. Recent

ly., Edgar has defined a partial order relation -J between 

measures defined on a given convex set such that we have the 

following: 

Theorem (Edgar): If K is a closed convex bounded subset 

of a Banach space with the RNPf then for each xefc there ex

ists a Radon measure (Cc on Kf maximal with respect to -J 

such that x « f Id dx*, .Ifin addition K is separable 
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then "maximal measure* means just the same as "supported by 

extremal points of K \ 

In general (i.e. v/hen K is not separable) it could hap

pen that the support of a maximal measure is disjoint with 

the set of extreme points of K. This has been shown by an 

example due to W.J. Davis, G.A. Edgar and W.B. Johnson* 


