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Extremal preimage measures and measurable. weak sections

by
Siegfried Graf

Given a finite measure space (x,a,,.,), a measurable space (Y,%), and a
¥~(0-measurable map p: Y—>X let M denote the set of all measures v on

o

with image measure p(¥) equal to po Then N is convex and it is

ratural to ask the following-questions:

1)
2)

3)
It

1.

What are the extreme points of Wi?

When is the set exTll of all extreme points of m non enpty and,
therefore, Tl £ g ?

When does Wlcontain exactly one element ?

is the aim of this talk to investigate these problems.

Characterization of extremal preimage measures

Problem t was first tackled By Douglas (1964) and later generalized
by Plachky (1976) (see also Portenier (1974)). The following theorem
is essentially a combination of the results due to these authors.

Theorem 1:

For a finite measure ¥ on & the follov:lfng statements are equivalent:

(1) v € exT

(11) There exists a 6-homorphisn§ % —b% uth V= ’LO§ and
A€ Bp ' (a)) for and Aea..

(1i1) The map T > fop (f e I. (x,a,r)) is an isometry of L (x,a,,q
onto L' (Y,%,v).

(iv) For all Be€ % there is an A€ Q with v(B » p-‘ ) =

Proof:
(1) ==> (iii) is an easy consequence of the Hahn-Banach theorem

(cf. Douglas’ (!96#), Portenier (tgm)).~
(1i1) => (iv) is odbvious.

(iv) => (i1): The map $: & —> Q4 defined by P(B) = 2, where

Ae with (B & p~ (A)) = 0,1is the @ -homomorphism we are looking
for.

(1i) => (i) is an easy consequence of the Radon-Hikodym theorem
(ct. Graf (1977)).

Another characterization of extremal preimage measures was glven
by Edgar (1976) in the case that X and Y are compact spaces,pis a
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Radon measure and p a continuous map. In the rest of this section
we shall be concerned with a generalization of Edgar's result. -
Let us first restate a definition due to Edgar (157€).

Definition:
An O, ~¥% -measurable map f: X—> Y is called a measurable weak s ction
for p iff f-1 - (A) ~ A for all Ae L.

It is clear that a y Ct,._-:f,-measurable section for p is also a measur-
able weak section for p. It follows immediately from the equivalence
of (i) and (ii) in theorem 1 that for a measurable weak section f for
p the image measure f(m) is in exT. In the special situation,described
above, Edgar (1976) showed the converse, i.e. every extremal preimage
measure, which 1s Radon, is the image of . w.r.t. some measurable

weak section for p. It is our air to prove this converse under more
general assumptions. The following lemma is the main step in this
direction. '

In what follows Y is always a ‘Hausdorff space and & = B(Y) the Borel
‘G-field of Y.

" Definition:
4 collection X of compact subsets of a Hausdorff space Z is called 2
base for the compact sets in Z iff X is stable w.r.t. finite inter- ~

sections and iff every compact subset of 2 is the intersecticn of sets
from %.

Lemma 1:

Let (x,m,,;) be complete and § : B(Y) >0/ a G-homomorphism with
p*% a Radon measure. Furthermore let F be a correspondence from X to Y
such that there exists a lifting © for (X, (l,)x), a sequence (K )n
compact subsets of Y, and, for every n, a hase’xn for the compact
subsets of K with the following properties:

(a) f"°§ is supported by L_JK .
(v) For all x€X and all n the set F(x)a K is closed. )
(c) There exists a p-nullset N in X with 9°§(K)\ NcF ‘(K) for
all Ke u:x.h
Then there ex:.sts an G{-B(Y)—measurable selection f for F with
=1 (8) € $(B) for all Be B(N).
Proof:
For x € X define ':Fx s {KC Y: K compact, X € B=§(K)} and f:X=>Y by
f(x)e n‘?x y if xe LJBP(K,) ~N and f(x) € F(x) arbitrary
n
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elsewhere. Then f has the desired properties.

As an immediate consequence of the lemma we get the next theorem
Theorem 2:

If (X,0,n), ¥, and & are as in the lemma then there is an 0L B(Y)-
measurable map f+ X—>Y with 71 (B) e §(R) for all B @ ®(Y), i.e.
$ is induced by f.

The following corollary is a generalization of a result of Sikorski
(T949).

Corollary:
If (x,(l,r) is complete and Y a Radon space them every 6-homomorphism
@: DY) — Q-/}\b is induced by an X -%(Y)-measurable map from X to Y.

Let us now return to our main object and state the generalized
version of Edgar's theorem which follows from combining theorem 1,
(1) 4> (ii), and theorem 2.

Theorem 3:

For a Radon measure Y on Y the following statements are equivalent:
(1) ve ex® .

(ii) There exists an Olr.-'éb(Y)-measurable weak section f for p.with

Y= f(,n-).

We shall now investigate under what conditions every element Vv € exL
is the image of p w.r.t. some %—Q(I)-measurable section for p. The
following corollary of theorem 3 gives a first answer.

Coroliary: , p is onto and
If, in the situation of theorem 3, Ythere exists a countable family

in O which separates the points of X then the following are equivalent:
(1) veexWL .
(11) There exists an&r-B(!)-measurable section f for p with v = t(r.).

"To simplify.the statem nts of the theorems we make the following

definitionmns.

Definition: ) .

Let v be a finite Radon measure on Y and p: Y-—»X any map.

(a) p is called y-a.e. locally point-closed iff there exists a
sequence -(Kn)n of compact subsets of Y such that ¥ is supported

by L!_-‘JKF and p"l (x)n K is closed for all x € X and all n.



(b) A lifting 0 for (X,0,p) is called (p,v)-almost stronz iff there
exist a sequence (Kn)n of compact subsets of Y and, for every n,
a base :w,n for the compact subsets of K, such that

(i) vis supported by \_)Kn ’
n
(ii) There is a};-nullset N in X with B(p(K),)~ N c3(K) for all

Eek, -

(Here p(K)* is the complement of a measuratle cover of [p(K).)

Let us illustrate the preceding definitions by some examples.

(1) 1t p'1(x)-is closed for all x & X then p is obviously y-a.e. locally
point-closed for all finite Radon measures v on Y. ]

(2) If X is also a Hausdorff space and p is v-Lusin measurable then P
is v-a.e. locally point-closed.

(3) If every compact subset of Y is metrizable then, for all p: Y—»X
and all Radon measures v on Y, there is a (»p,v)-alnost strong
lifting for (x,a%,pJ.

(4) If X is a Hausdorff space such that (x;ﬁnpo adrits an almost strong
lifting and if p is v-Lusin measurable then there exists a

(p,v)-almost strong lifting for (X, I.,)»).

Applying lemma 1 and theorem 1 we get -

Theorem 4
Let v be a finite Radon measure on Y. If p is onto, y~a.e. locally point-

closed, and if there exists a (p,v)-almost strong lifting for (X,O.,.,,,-.)

then the following are equivalent-

(1) ve exW and K~Np (p(K)‘.) is a y-nullset for all compact
subsets K of ¥,

(ii) There exists an Q,;-WY)-measurable section f for p with v = f9b).

The conditionvfK~ p"(p(K)*))-Ofor all compact sets K ¢ Y is satisfied
if p(K)e ()l.,~ for these K. It is also satisfied if p is y-Lusin
measurable.

" Remark: -

It should be mentioned that under the assumptions of theorem 4 every
Radon measure vel with v(K~ p"(p(x)*))=0 for all compact sets K & Y
has a strict disintegration w.r.t. p and e
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2. Existence of extremal preimage measures

As we saw in section | the existence of measurable (weak) sections for
p implies the existence of extremal preimzge measures. %e shrz=ll use
this fact to prove the existence of extremal preimage measures.

a) Existence of measurable selections

The first theorem in this field was von Neumann's celebrated Measur-
able Choice Theorem (cf. von Neumann (1949)). This theorem was
generalized by several authors (see for instance Aumann (1965),

Sion (1960), Kuratowski - Ryll-Nardzewski (1965)). Using a theorea
on continuous selections due to Hasumi (1969) we shall prove another
selection theorem which is more suitable for our purposes.

Theorem 5:

Let X be a topological space, Y a reéular Hausdorff space, B3(Y)c CL
and m a finite measure on i such that (x,ﬂqw) is complete and admits
a strong lifting. Furthermore let F be a point-compact upper semi-
continuous correspondence from X to Y. Then there exists an Q.-B(Y)-
measurable selection f for F such that fgh) is inner regular w.r.t.
closed sets. :

Proof: )

For a strong lifting © for (X,Q,)«.) the collection V‘l'e ={Aed: Ac O(A))
is an extremally disconnected topology on X which is stronger than
the original topology. F is, therefore, an upper semi-continuous
correspondence from (X,Jb) to Y. According to a selection theorem of
Hasumi (1969) there i1s a Tg-continuous selection f for F. It is
easy to see that f hasg, the desired properties.

b) Existence of measurable weak sections

Usingithe selection theorem we get the following -

Theorem 6:

Let (x,q,») be any finite measure space, ¥ a Hausdorff space, and
p: Y—X a B(Y)-0Q -measurable map with
(1) u(X) = sup {4*p(K)): K ¢ Y compact]
(2) p*(p(K)) = inf.{,M(p(U)): K€U, U open} for all compact KcY
Then there exists an ﬂ*-EKY)-measurable weak section f for v with
f(F) a Radon measuré on Y. -

Proof:

For reasons of simplicity let us assume that Y is compact, F = p".
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Let © be a lifting for (X,0,,) and To = {Aemﬁ: A< ©(aA)Y. Then ©

is a strong lifting for (X,U?,)u.) w.r.t. the topology ‘3'9. Let F be

the closure of F in X x Y w.r.t. the product topology. Condition (1)
implies that T is a point-compact upper semi-continuous correspondence.
Due to theorem 5 there is an (I,L-B(Y)-measurable selection f for F

with f(,c,) a Radon measure. From condition (2) we deduce that f is

a weak section for p.

Corollary:
Provided p satisfies the assumptions of theorem & then there is a

Radon measure in exM.

Condition (2) in theorem 6 is, for instance, satisfied in the

following cases:

(1) X is a Hausdorff space, p.a Radon measure on X and p: Y— X
is continuous.

(i1) Y is normal, every compact subset of Y is a Ga—set, p'l(x) is
compact for all x € X, and p(U) € (17,.. for all open U c Y or
p(F) ¢ ()l,',~ for all closed Fc Y.

Combining this last fact with theorem 6 and theorem 4 we get the
following

Proposition:

Let (X,Q,)A.) be any finite measure space, Y a Hausdorff space in
which every compact subset is metrizable, and p: Y—X a B(Y)-0-
measurable ma;&’?‘]ti%sume there is a Radon measure v on Y with p(v) =p
and p v-a.e. locally point-closed and p(K) € Q,’,_for all compact K<Y.
Then there is an ar-'B(Y)-measurable section for p.

7’

Uniqueness of preimage measures

Again Y is always a Hausdorff space, while p: Y—>X is a R(Y)-0OtL-
measurable map, ¥l = v ¥ measure on B(Y) with p(v) =f“}‘

Definition:
Two ﬂr-B(Y) .& surable maps f‘,fzz X —Y are called weakly u-equivalent
11g p(7(B) f;’ (B)) = O for all B € B(Y).
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Theorem 7:
Under the assumptions of theorem 6 the following statements are
equivalent-
(i) TLcontains exactly one Radon measurwu. .
(ii) Any two qF-EKY)-measurable weak sections f‘,fz for p with

flg*)’ faq‘) Radon measures on Y are weakly p-equivalent.
(1ii) For @isjoint compact sets KI’KZ ¢ Y the equality

MpE) v (k) = W(p(K,)) + p*(p(K)))

holds.

If Y is 6-~compact and metrizable then (i)-(iii) are equivalent to

(1v) p*(Ixex: card(p™'(x)) > 2}) = 0 and p(K) e m,“n p(Y) for
all compact K € Y.

The equivalence of (i) and (iv) has been proved by Eisele (1975) for
a special case and by Lehn-Migerl (1977) in a different situation.

For other considerations concerning the uniqueness of preimage measures
we refer to Yershov (1974).

A more detailed account on the subjJect of the two last sections of this
talk car be found in Graft (1977).
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