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SIXTH WINTER SCHOOL (1978) 

ON CONCRETE FUNCTORS IN UNIFORM SPACES 

by Jiri VilimovsJĉ  

We work in the category V of Hausdorff uniform spaces and uni­

formly continuous mappings. A functor F : U-*V is called concrete, 

if D F = F , where D is the forgetful functor into sets. F will be 

called a concrete reflector, if F is idempotent and FX is coarser 

than X for all X , dually F is a concrete coreflector, if it is 

idempotent and FX is finer than X for all X . 

Recall that concrete reflectors correspond one to one with the 

classes of uniform spaces which are productive, hereditary and contain 

a compact interval. Concrete coreflectors correspond to the classes 

which are closed under sums, quotients and contain a nonvoid space. 

The special role will play embedding preserving functors, i.e. tho­

se, for which FX is a subspace of FY provided that X is a subspa-

ce of T • Observe that in the case of concrete coreflectors F is 

embedding preserving iff the corresponding class is hereditary. 

Theorem: a) If ( &,F) is a concrete reflection (that means F 

is a concrete reflector and «& is the corresponding reflective class), 

then there is the largest embedding preserving concrete reflection 

(̂ /,F) contained in (X,F) . (See [V])« 

b) If (#,F) is a concrete coreflection, there is the smallest 

embedding preserving coreflection (t2,F) containing (&,F) • (See 

[3]). 
Our aim is to study the behavior of such functors on the compact 

interval I , the hedgehog H(00) (the cone over CO with uniformly 

discrete uniformity), moreover we give some extremal coreflective con­

ditions for "noncontaining" these spaces. 

Theorem ([4^): If F is a concrete reflector in U , then either 

FH(CO) = iilCO ) , or FH(fc)) = pH(&)) , where p stands for the pre-



fit 

compact reflector. 

Moreover it can be proved that: 

Theorem ([4]): If X is a distal space (i.e. a space having a ba­

se of finite-dimensional covers), F a concrete embedding preserving 

reflector, then there is some cardinal reflection pm such that 

FX = p ^ . 

Theorem < [2J): If F is a coreflector in U , then either FI -= I, 

or all finite partitions of I into Baire sets are uniform in FI . 

Theorem ([V]): If F is a coreflector in U , then either FH(4))» 

= )HU) ) , or all finite cozero covers of H(#> ) are uniform in 

FH(fc)) . 

Theorem ([2-P: Tnere exists the largest coreflective subclass &j 

of V not containing I • The following properties of a space X are 

equivalent: 

a) X€ Sj . 

b) Each finite Baire partition of X is a uniform cover. 

c) Each Baire-measurable f : X—*I is uniformly continuous. 

d) If {^/j^o is a * a m i ly of subsets of X such that for n —1 

the set A is far from AV*An 1 where A =LJ{ A
n> n=0,lt...} , 

then AQ is far from A V A Q in X • 

e) If f is a pointwise limit of uniformly continuous functions 

f.: X-*I , then f is uniformly continuous. 

The properties b), c), e) were studied previously by A.Hager and 

Z.Frolik. Note that from the theorem follows that for any space X ha-

, ving a nonuniform finite Baire partition one can inductively generate 

I from X . 

Theorem ([5]): There exists the largest coreflective subclass ^ H 

of V not containing H(o)) . The following properties of a space X 

are equivalent: 

a) X€ £H . 

b) Each countable uniformly discrete union of boundedly finite uni-



formly discrete families is uniformly discrete. 

c) If f : X-*H(&? ) is uniformly continuous, then the f-preimage 

of each finite open cover of H(^) is uniform in X • 

d) If fn: X—»I is a sequence of uniformly continuous functions 

such that the family {coz fR; nGco} is uniformly discrete, 

then the mapping £f is uniformly continuous. 

e) .For each subspace Y of X , f : Y-*R a uniformly continuous 

real valued function, the preimage of each finite open cover 

of R is uniform in X • 

He finish with the following surprising result: 

Theorem ([V))- (Assuming the nonexistence of a uniformly sequen­

tial cardinal.) 

There exists the largest nontrivial hereditary coreflective sub­

class of U , namely the class & H • 
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