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On countability of the spectrum of Banach space valued 

weakly almost-periodic functions 

K.D. Kiirsten, Leipzig 

If f is an almost-periodic (a.p. ) function, then for s£JR 

there exists the mean value 

a(s) = lim i-i f(t) e lst dt . 

We denote by S(f) = {s; a(s),*-0} the spectrum of f. A Banach space 
valued function F: JR-^X is called weakly a.p. if for every 
y fe X* J^F is a.p. The spectrum of P is the union Us(f°F) 
where ¥ runs over X*. The f ollowing theorem v;as proved by 
L.I. Kadec and K.D. Kiirsten /2/. 
Theorem: The spectrum of every Banach space valued weakly a.p. 
function is countable. 
Let us consider the space AP of a.p# functions as a subspace 
of Leo( E,dt). 
Lemma 1: A subset MCAP is norm separable iff the union l/S(f) 
v/here f runs over M is countable. 

This follows immediately from well known properties of a.p. function 

Lemma 2: Every ^(L^ ,L^)-compact convex subset of AP is norm 
separable. 

Sketch of proof: If MCAP is convex, w*-compact and nonseparable, 
Then U3ing methods of /5/ one obtains a subset A C M such that 
every norm separable subset of A is countable and such that 
(A »v/*) is homeomorphic to (0,1j . Transforming the Haar measure 
of £o,li we obtain a measure m on A. The set of a.p. functions 
f w*- S s(f )f dm(f); g€L .-(m)J is norm separable and it follows from 
Bochner's approximation theorem (see /3/) that this set is 
contained in the image of a separable norm one projection in AP. 
This Projection P can be given as a limit of a double sequence 
of w*-continuous operators and this allows us to show, that for 
m-almost all f*A Pf=f, what is impossible. 
Proof of theorem: Given a weakly a.p. function F: |R-L>X. We 
consider the operator B defined by 

L1(R)9h-»J3(h) = Pettis-1 F(t) h(t) dt & X. 
Then B* / = ^*F G AP. By Lemma 2 B*has separable range and 
the theorem follows from lemma 1. 

Let us give some examples to the following question,connected 
..I 

with lemma 2: For which Banach spaces X and subspaces YC X 
every w*-compact (convex) subset of Y is norm separable'* 
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1.) Let Ĵ LO,]] £ C Cb, U be t&e closed linear hull of point - mea
sures. Then every w*-compact convex subset of 1-[,0, ij is separable. 
2.) V.I.Rybakov /4/ proved (using some special set - theoretic 
constructions) that there exist a Banach space C(K) and an uncoun
table set A .such that l-j(A)CC(K) and such that every w*-compact 
subset of l-j(A) is separable. He also proved, that in such situation 
the identity map (1-j C/l)»w*) —^ (1.. (/I), B.U) is universally measu
rable. 

3») Using some modifications of methods of /5/ it can be proved, 
that there is a subset Pc£b,lJ of cardinality continuum such that 
every 0" (11(P),C To,lJ )-compact subset of 1..(P) is norm - separable. 
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