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Seventh Winter School on Abstract Analysis 1979 

THE INNER STRUCTURE OF REAL EXTENSORS 

IN UNIFORM SPACES 

J. Vilfmovsk^, Praha 

We refer to ^l] for basic concepts pertaining to uniform 

spaces. Under a space we always mean a Hausdorff uniform spa­

ce. Recall that a uniform space X is called a real extensor, 

(RE), if every uniformly continuous real-valued function on 

a subspace of X extends to a uniformly continuous function 

on X. The aim of this note is to give the full description 

of this important property by means of uniform covers only. 

Several sufficient conditions have been known for a spa­

ce to be RE. J.Isbell [i] proved that locally fine spaces 

have this property, this result was generalized by Z.FroliLk 

[F] for sub-inversion-closed spaces, and finally Z.Frolik, 

J.Pelant and the author [FPV] proved that even each so called 

hedgehog-fine space enjoys the property RE. Recall that the 

space is called hedgehog-fine, if countable uniformly discre­

te unions of finite uniformly discrete families are uniform­

ly discrete. 

All the three preceding sufficient conditions are coref-

lective in uniform spaces (closed under the formation of uni­

form sums and quotients) and it can be proved (see [FPVJ ) 

that the class of all hedgehog-fine spaces is the largest co-

reflective class (in uniform spaces) contained in the class RE. 

However this sufficient condition for a space to be RE 

is still far from being necessary. For instance one can easily 

see that every zerodimensional uniform space has the property 

RE, but, of course, need not be hedgehog-fine. 



If we want to characterize the uniform covers of real 

extensors, the following "unstable" property comes in in a ra­

ther essential way: 

Definition: Let X be a uniform space, Y its subspace. A uniform 

cover U of Y is said to be perfectly refinable in X, if for 

each finite pseudometric y on U there is a uniform cover 

v of X such that S t V restricted to Y refines the cover 

j Д L v i U < u ) 
for al l k£to . 

If X = Y, we simply call ^A perfectly refinable. 

Here St° ^T = U and for k >, 1 StketT means the cover 

| s t k ( x , V ) ; x € x \ , where St k (x ,V) ^lyfcX ; there exist 

V p . - . ^ c T with XfeVp y € V k and V ^ ^ V . ?- 0 for a l l i = 2 f . . . 

Simple examples show that this property is really very 

"unstable". The meet of two perfectly refinable covers need 

not be perfectly refinable, also a perfectly refinable uniform 

cover of a space need not posess a perfectly refinable uniform 

star-refinement. 

The following nontrivial theorem is a recent result of 

D.Preiss and the author. Recall that a uniform cover TJ. is cal­

led finite-dimensional, if there is a natural number n such 

that each point is contained in at most n members of ^ . 

Theorem: Let X be a uniform space, Y its subspace. The following 

conditions are equivalent: 

(1) Every uniformly continuous real-valued function defined 

on any subspace of Y has a uniformly continuous extension 

over X. 

(2) Every countable finite-dimensional uniform cover of Y 

is perfectly refinable in X. 
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The proof can be found in [PVJ. The necessity of condi­

tion (2) is proved by careful handling with uniforr covers 

of Euclidian spaces, the proof of its sufficiency uses rather 

deep theorems c n-betv n typ* stu iel syjtemati ally in [PV]# 

If we put / in h Theor m, w bt *n the p omi scd 

characterization 01 .^ - spaces: 

Corollary: A uniform o ̂ ce X is a real extensor if and only 

if every countable finite-dimensional uniform cover of X is 

perfectly refinable. 

At the end we show how to apply this result to the con­

struction of some RE-uniformities. It is proved in \EPVJ that 

if R' is an RE-uniformity on the real line finer than the usu­

al metrizable uniformity R such that R1 is a value of R under 

some coreflector in the category of uniform spaces, then R* 

is finer than the topologically fine uniformity t~R (having 

for basis all open covers of R). However it was a problem, 

whether (omitting the last assumption) one can find some 

RE-uniformity on the real line fi&er than R and strictly coarser 

than t~R. The following example gives even infinitely many 

such uniformities. 

Example: Let D be an infinite uniformly discrete subset of R. 

Let v be the family of all open covers *U of R for which 

there is € > 0 such that for each d ^ D one can find U t ^ 

with (d-£,d+£)c U. Then V is a basis of an RE-uniformity 

which is finer than R and strictly coarser than t^R. 

Sketch of the proof: The family V is obviously closed under 

meets. Moreover each cover from v> can be refined by a cover 

^ = \(an»bn) > n € Z \ s u c n t h a t an< bn-1 < an+l f o r a 1 1 
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n s Z and, for some o >0 and each d £ D there is a unique in­

teger n with b n - 1 £d-o <
d + S ^ a

n + 1 * ** * s n o t much diffi­

cult to show that Hi is perfectly refinable in V • (In 

particular *U has a star-refinement in \> •) Therefore using 

the Corollary V is a basis of an RE-uniformity. The remai­

ning assertions are obvious. 

Observe that for each open cover V of R,which is not 

(metrically) uniform, we can find (by induction) an infinite 

uniformly discrete subset D of R with the property that f6r 

any £ >0 there is d €D such that no V ^ V contains the in­

terval (d-£,d+£). The preceding Example constructs an RE-

uniformity finer than R, coarser than t^R and such that ^ 

is not uniform. 
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