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.'r.Vh.Jri: WINTER SCHOOL /1979/ 

ON THE SINGLEVALUEDNESS AND DIFFERENTIATION OP METRIC 

PROJECTIONS 

L.Zajicek,Praha 

Let X be a real Banach space and M c X a closed 

subset of X. For x £ X denote by d^{x) the distance from 

the point x to the set K. The metric projection P^ of the 

spj.ce X on the set M ' s defined as the /possibly/ multivalued 

operator 

*M(x> - { y 6 H ; J|x-y// = dM(x)i 

Denote by A™ the set of the multivaluedness of P--. 

Tne sets ^M were investigated e.g. in £2j 9 [$} and [^J . 

Definition. Let o f v 6 X and Z be a topological complement 

of Lin-fv} . Let f be a Lipschitz function defined on Z. Then 

the set M = -[z + f(z) v ; z6Z $ is termed a Lipschitz hypersurface. 

Theorem 6 If X is a separable strictly convex Banach space 

then A„ can be always covered by countably many of Lipschitz 

hypersurfaces. 

In the following the Frechet differentiability of multivalued 

operators is consider in the natural generalized sense. By NM 

we denote the set of all points at which PM is not Frechet differ-

entiaule.The sets WM were investigated e.g. in [A] and [lj . 

V^'C^n C7.3 There exists a compact convex set M C R such that 

"V - ( J M L / K V ) is a set of the first category. 

'"- ̂ or^m ^"YJ Xf X is a two dimensional st>rictly convex Banach 

oace then 1L. is always a set of /Lebesgue/ measure zero. 

Tv jyr-n [r]~\ Let X be a finite dimensional space with a norm a 

•/rich belongs to the class C2(x ~£o}) and for which D2q(x)(h,h) > 0 

:'..»r my linearly independent x£o,h£o. Then NM is alv/ays a set 

.- .- . or/ neac:ure zero. 
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