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oEVENTH ÏÏINTER SCHCOL /1Э7Э/ 

INTEGRAL REPRESENTATIONS IN CONVEX CONES 

E.G.F. Thomas 

Summary: We prove the folic ̂ ing theorem: 

Theorem 1. For every completely regular topological space E the cone M, (E) 

of bounded positive Radon measures is well capped. 

This is applied to: 1) A converse theorem on integral representations. 

2) A theorem on the decomposition of invariant 

maasures into ergodic components. 

Recall that a cap of a convex cone r is a convex compact set K c r such 

that the origin belongs to K, and such that r^K is convex. A cone is well 

capped if it is the union of its caps. 

The following two properties which explain the importance of well capped 

cones are well known: 

1. Every well capped cone is the closed convex hull of its extreme rays. 

2. Every closed convex subcone of a well capped cone is well capped, 

(cf. [1]). 

Proof of theorem 1 : Let f :E -> (0, +°°] be a positive function such that 

for each a > 0 the set {x G Erf (x) <a} is compact. Let C = {m £ N.(E) : 

/ fdm < 1}. Then C is a cap in M,(E); this easily follows from Prohorov's 

theorem. We now show that every m € M. (E) belongs to such a cap. There is 

a partition E = N + r K of the space, where the K are disjoint compact 

sets and m(N) = 0. Then, since Zm(K )< +°° , there exists a sequence 
n 

(a ) .of positive numbers with lim a = +» and la m(K ) < 1. Let 
n n>\ v n n n 

f(x) • a on K , f(x) =+<»on N. Then {x : f(x) <. a}= U Kn is compact and 

/fdm < 1, i.e. m £ C . "~ 

Theorem 2. Let T be a closed convex cone in a quasi-complete locally 

convex hausdorff space. Assume Thas a bounded base B and assume every point 

of B is the re ultant of a unique Ridon probability measure on the extre e 
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points of B. Then T is well capped. 

Proof. Let E be the set of extreme points of B. The space being quasi-

complete it can be shown that the map r : m ->/xdm(x) from M.(E) to T is 

well defined. It is continuous in the weak topology and by hypothesis 

bijective. Moreover, it can be shown that the restriction of r to a cap 

C (notation of proof of theorem 1) is continuous. Thus r(C
f
) is a cap in 

T and r is the union of such caps. 

Theorem 3. Let E be a completely regular Souslin space. Let A be a closed 

convex subset of M*(E). 

Then 1) Every point a £ A is the resultant of a Radon probability on 

the set Z7(A) of extreme points of A. 

2) This measure is uniquely determined for each a £ A if and only 

if A is a simplex (i.e. the cone r = 'J A A is a lattice). 

Proof. This will follow from a general theorem on integral representations 

([2] Corollaire 4) is we prove that r has the following two properties: 

a) r is the union of metrizable caps. 

b) The closed convex hull.of each compact subset of T is compact. 

It suffices to prove these properties for the cone *-i(--) instead of T, 

Now a) follows from theorem 1 and from the fact that Mj!*(E) i-s a Souslin 

space (in the topology a(M,, C.); cf. [3]), which implies that every compact 

subset of M, (E) is metrizable. 

In order to prove b) it is sufficient to prove that for every compact 

space K, every continuous map t -> y from K to M, (E) and every Radon 

measure m on K, there exists y £ MjJ"(E) such that 

(1) y(cp) = /yt(tp)dm(t) V < p e O h ( E ) . 

In order to prove this we define a linear form y on C.(E) by the 

formula (1). Then y is clearly a Daniell integral on C,(E) , and so, by 

Daniell's theorem there exists a bounded measure P on the smallest 

-al bra, rendering tie functions in C, (E) measurable, such that 
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p(<p) - JtpdP. Now E being a Souslin space this a-algebra coincides with 

the Borel a-algebra of E, and P is a Radon measure. Thus we may identify P 

and u and we are done. 

Application to invariant measures: -Let E be a completely regular Souslin 

space and let G be a group of homeomorphisms of E. Then every G-invariant 

probability measure y on E has a unique decomposition 

(2) y -- / u dm(y) 

in ergodic components. 

Proof. It suffices to apply the previous theorem to the set A of G-invariant 

probability measures. Then r = U XA is the set of all G-invariant bounded 

measures. Since the supremum in M£(E) of two elements of r again belongs 

to r it follows that r is a lattice, and theorem 3 may be applied. 

Remark (2) is equivalent to 

y(B) = / y(B)dm(u) 

for all Borel sets B. 

In this form the result could possible be extended, with the help of the 

methods of F. Topsoe, to the case where E is a, not necessarily completely 

regular, Souslin space. 

Example (cf. K. Gawedzki) : - E = S'(1R ) G the Euclidean motion group. 
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