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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

On generalizations of LaSnev'e theorem 

3. Chaber 

We investigate spaces X with the following property 

(*) for any Y and any closed mapping f : X-^Y Y • 

GO 1 
- Y J ^ U Y-I • where f (y) ie compact for y€Y„ and Y4 is o ±ml a. o i 

closed and discrete in Y for i-£ 1 . 

It haa been proved by LaSnev that metric spaces satisfy 

(•) • 

A liat of generalizations of Lainev's result with exact 

references may be found in a recent survey paper on closed 

mappings [BJ (see aleo [6j and [wj). 

"~*~" We prove 

Theorem 1. Regular tf-spaces satlafy («) • 

Ad a corollary we get 

Corollary 1 |wl • Moore spaces satisfy («) . 

Theorem 2. If X is Cech complete, f : X—>Y closed and 

0f (y) is compact for y £ Y , then Y haa a decomposition 

as in (») . 

Corollary 2.1. Metalindelof Cech complete spaces satlafy (*) • 

Corollary 2.2 fuj . Dieudonne complete Cech complete epaces 

satisfy (*) . 

The following example illustrates Theorem 1. 

Example 1. One can construct three topologies on the unit squa

re such that the projection f of the resulting spaces Xn 

n»l,2,3 onto the unit interval I is continuous and closed 

and 



4 

1, X1 9 a Hauscor 0"-spaca and f 
c c for y G , 
X 2 ď compact but f (y) la not compact 

€ 
• X la paracompact and has a cloauro rv ve 

y compact t but f (y) is not Li delcf for 
In Th ořem 2 one cannot r pláce č ch coraplstenes by t 

p-apace proparty. 
Example 2. There exiata a p-apace X and a closed mapplng f 
of X onto a locally compact apace Y 8uch that 3f" (y) 
la compact for y € Y and Y doea not háve any decom 08ltlon 
as In (*) • 

In vlew of Corollary 2.1 and a reeult of Veličko the fol-
lowing problém aeeme to be naturel 
Probl m« Do matallndalof p apace satisfy (*) ? 

Th method of proof of Thaorem 2 cannot be usod to solv . 
thi8 problém because of 
Ex mple 3, There exlsts a perfect mapplng of a met llnd l**f 
p-8páce onto a 8pace that 18 not a p-8pace, 
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