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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

REMARKS OK DIMENSIONS OP GRAPHS 

• Jifi Vinarek 

1. P r e l i m i n a r i e s 

The well-known Dushnik - Miller dimension of partly 

ordered sets (see \j)ll] ) was shown by Ore([0])to coincide 

with the necessary number of linearly ordered factors in 

a product *]T 1 into which the given poset can be fully 

embedded. It is a particular case of a characteristic of 

objects based on representations of products of sub&irect-

ly irreducibles. 

Recall a definition of a subdirectly irreducible (si) 

object for a productive hereditary class C of digraphs 

(i.e. a class closed to categorical products and full sub

graphs ) : A 0-graph (i.e. a digraph AeO) is SI iff for 

n 
every full subgraph m : A—>• TT &± such that all p.m 

isl 

are onto (p.s are projections) at least one p̂rti is an iso

morphism. ( This is a special cape of the general categori

cal definition of a SI object - see e.g. Cpv3«) 
One can see easily that under the assumption of pro-
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d u c t i v i t y and h e r e d i t a r i t y of a c l a s s C, e v e r y 

CX * ( £ R ^ X 2
 ; (x,R) € c > , n ) 

i s a c o m p l e t e meet s e r a i l a t t i c e ^ d i g r a p h A = ( X , R ) i s 

n 
c a l l e d meet i r r e d u c i b l e CHI) i f f f o r Ite C~*\ R. a t 

i = l -1 

l e a s t one Tl±- R . one c a n s e e e a s i l y ( c f . [PV]) t h a t eve ry 

SI i s MI. 

Now, three types of dimensions based on III and SI 

can be defined : Let A = (X,R) be an object of C. Then 

a meet dimension m-dim^ (X,R) - min £n ; .1 R-, , .. ,,R , 

"" n 

(X. ,R. ) are JH for i = l,...,n and R= C\ R.\, a pro-

duct dimension p-dimc A =• min ^n ; A is a full subgraph 

n ~ i 

of X T Kj. with 1-i SI J ,and a subdirect dimension 

n 
s-dimc A :=- min in ; A is a full subgraph of | | A-

with Aj_ SI and p^m onto (p. are projections, m is an 

embedding) V,i.e. s-dim is the smallest number of 

factors in a subdirect representation of A. 

Remark. 'j?he o r i g i n a l Dushnik - F i l l e r ditnensbn was m-c im 

o f p o s e t s . T h e p r o d u c t d i m e n s i o n of g r a p h s war etui '* b 

L .Lovasz , t T . I I e s e t f i l , A . P u l t r e t c . ( s e e e . g . [ I F ! J , ( j ' x
 ; > 

[Tr^, [Tr2J). 

As we mentioned, for C a class ol J eflexive 
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posets, there is p-dirty, = in-diiiL-. (and also-? s-ttMjnip) • 

Another example is the class of all the antireJO.exive 

antisymmetric digraphs £ where i-a-diisL,, = p-dim-, = s---<tMmr,
<£: 

<£ 2y. But in the general case, these three dimoeiiisioims 

can he different. One can see easily that p—dimiu, =• 

^ s-dicu iff the subdirect irreducibility is hereditary 

in C. (An example of non-validity of this equality are 

bipartite graphs where3 u £ is SI hut «, <- is not.) 

notation. Denote P a class of all the antireflexive po

sets, Q a class of all the digraphs (X,R) such that 

card(Rr>R~ )i 1 and if (x,y) and(y,x)^R then j_(x,z) , 

(z,x)^o R. i= 0 implies z•= x. (Actually, Q contains 

antireflexive antisymmetric digraphs with possible 

one isolated loop added.) 

2. D i g r a p h s 

Definition. A class C of digraphs is called trivial 

if every C-graph has at most one vertex. 

The aim of this chapter is to prove the following 

Theorem 1. Jjet C be a productive hereditary class of 

digraphs. If p-dimr = m-dim H s-diiry, then either C is 

trivial or PcCcQ. 
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Lemma 1. If s-dim0 A£" ra-dimc A for any A£ C then C contains 

no digraph with two loops. 

Proof. Let G be a maximal C-graph with two vertices and two 

loops. 

Consider three cases 

1. (x -= s*k ^r * Then ^ ^ - ----^ is in C. it is 

Til but it is not SI. 

2- G ~ & ^ • Tlien tfr^ ^> ±S i n—' it ± S 

MI but it is not SI. 

3. (T -=• ^ 1 • Then ^ ^ ~ is in £, it is 

MI but it is not SI. 

In all these cases an existence of an object which is 

MI but not SI contradicts the assumption s-dimc^m-dimc. 

Lemma %. If s-dim^ A=m-dirac A for any A€.fJ then--c > (fc 0. 

Proof. Suppose G- z *~> <-- C. Then 

H ~ ^ % * C. 
& 

By Lemma 1, H is maximal hence Ml. But on the other hand, 

H is a full subgraph of G and therefore it is not SI which 

is a contradiction. 

Lem^a 3. If s-dira0 H p-dirâ  = in-dim.-, then ^ > £ C, 

><2 4 £ . 

Proof^ a/ Suppose G--- - > , H = ^Q. G £• T n e n 
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E s ^ — ~ ~ ^ - ^ i s a f u l 1 subgraph of Gs< H 

hence H^C and it is not SI. But according to Lemma 1 

and Lemma 2, K is III which is a contradiction, 

b/ Suppose G G C , HC^JJ. Let K be a maximal £-graph con

taining G as a full subgraph. (Such a graph exists "because 

is ajC-graph containing Gas a full 

subgraph,} 

/!/ Suppose K ~/<Z^_ \ • Then L =^<C^ A is a full 

subgraph of K>'G hence L is a subdirectly reducible 

£-graph. But one can see easily (according to previous 

lemmas) that L is MI which is a contradiction. 

/ii/ Suppose K « g C ^ ^ . -Dher* M =^<^ \ is a 

full subgraph of K/L G- hence M is a subdirectly reducible 

Crgraph-i According to the raaximality of K and the as

sumption H<£ C, M is M . 

/iii/ Suppose K - ^ ^ . Then K is MI but it is not SI 

which is a contradiction. 

c/ Using- the same technique as in b/ one can prove that 

also under the assumption GdL C,'HGC one obtains a contra

diction. 

Proposition 1. Let C he a productive hereditary class of 

digraphs. If s~dimG:-= p-dimcs m-dim^, G^ (x,R) G C_ 
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then for every Y c l such that card Y - 3 there i s 

card(R n I A Y) £ 3 . 

Proof. 

1. If Y contains a loop vertex of G then the assertion 

follows from Lemmas 2 and 3. 

2. Suppose there exists an antireflexive C-graph with 

3 vertices and more than 3 edges. Let G be a maximal 

Ĉ-graph with these properties. 

a/ G -— ^^^00^r^\x • Then H = ^ ^ ^ is a 

subgraph of G / ** >- hence it is meet reducible and 

K*=. j ^ ^ /\ is a j£-graph. Therefore, L = 4^CZ^m_~- s 

is a C-graph, m-dimc L*-- 4 hut L is a full subgraph of 

G ^ v and hence s-dimg L «= 2. 

b/ G ==. ̂ r ^ ^ X * Then again L-— ^ ^ ^ i s ai.?r&raPn 

and m-dimg L — 4, s-dimc L=2« k 

c/ <* •=• jtf*0^ * Then M - -*s-—yL$—^ is a full sub

graph of G2 hence it is a subdirectly reducible ̂C-graph. 

But according to the maximality of G, M is also maximal 

{and hence Id) which is a contradiction, 

d/ G = j*r X * Then 1ist̂ . is a full subgraph of 
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G ^ ^—> hence it is a subdirectly reducible C-graph« 

it must he also meet reducible and therefore also 

^T ^ is a C-graph* By a similar technique, one 

can p;rov,e :that
r
,t >g/ vX "-" is a: O-graph . Hence, all 

the tournaments with 3 vertices, are meet reducible inj?. 

Denote- '"...-..; ,\ * 'V «'- ' - '" 

;.-: v-..- *. .* ;v2- ,f.I „. - -J ; i .̂ ..;- \ -

A - /к 
1~ ^З ^ -

Since A is a full subgraph of G it Is a C.-graph 8Jid 

s-dinu, As: 2. Therefore, m-dim^ A = 2 and A-=• B A C . 
-k .•'* i-. 

According to a/,b/, c/ neither B nor C have edges 0,1)
f 

(3,2), (4,2). .
 A

 . 

/!/ Suppose B has both edges(3,4) and (4,3). -Then C 

contains none of edges (3,4) ,(4,3) and" a subdirectly 

reducible * two-point discrete "graph is a J.ull subgraph 

of C which is a contradiction. _' 

/ii/ Suppose B has only one of edges (3,4) and (4,3). 

Then B CDntains a" tournament vdfch three vertices as a 

full subgraph which is a contradiction with the meet 

reducibility of all the" tournaments with 3 vertices, 

e/ For the case G «=• ^ N or G = j^^^S o n e 

can use a similar technique as in d/. Q.E.D. 
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Proposition 2. Let_C_be a productive hereditary class of 

digraphs. If s-dimc = p-dimQ = m-dimc then every C-graph 

is antisymmetric. 

Proof. Suppose the contrary. Then C_contains a symmetric 

graph G- with two vertices. By Lemma 1 and Lemiaa 2, 

G *=. ^ ^ . Talce a maximal C-graph H with three ver

tices containing a as a full subgraph. 

Consider two cases : 

a/ H has a loop. According to Proposition 1, H" = $ 7 . 

Talce a maximal C-graph II with 4 vertices containing H as 

a full subgraph. According to Proposition 1, the fourth 

vertex of K cannot be connected with both vertices of 

the symmetric edge by an edge. Hence, H contains a dis

crete graph Dp with two vertices as 9. full subgraph which 

is a contradiction with the assumption p-dimc := s-dimc 

(because * * -=. ^—*- x • J . 

b/ H has no loop. Then H contains Dp as a full subgraph 

and it is a contradiction with the assumption p-dim = 

= s-dimc. Q.E.D. 

Proposition 5. Let C be a productive hereditary class 

of digraphs, rf-s-dim^ s p-dimc = m-dimc then eitter (3 

is trivial, or 0_ry J\ 

Proof. Suppose that C is not trivial. Sine© £ is pxodu^ll^t 
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and hereditary, it suffices to prove that C contains all 

the antireflexive linear orderings L-,, Lp, ... 

Suppose that there exists an n such that L <= C, 

Ln + ^ C. Consider three cases : 

/l/ n^. Q^ Then according to Proposition 2, C contains no 

digraphs with proper edges.Sincetfis not trivial , there 

are the following possibilities : 

a/ C_-=> SET (the system of all the discrete graphs) .But 

for D-* (a discrete graph with three vertices ) there is 

s-dim~ D-, -2, m-dimn D_ = 1 which is a contradiction, k 0 k 5 % 

b/ C - SET ̂  (the system of all the digraphs with at most 

one loop and with no proper edge ) . But then s-dim^ ̂  . = 

=. 2, m-dimc %L * -= 1 which is a contradiction. 

/2/ n=r 1. Take 
1 

G = 0 ^ ^ 

- 2 

Then s-dimc G = 2 ==> m-dimc G = 2 . Therefore, there ê ist 

IH 0-graphs H-̂ Il such that G -= H1/K.H2. We can suppose 

that E-, has no loop. Then 

1 

% '= 
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Take 

II = 

Then s-dim c IZ ss-2 -=^ m-dim^:^ 2 and t h e r e e x i s t ICE C-graphs 

^1 ' K2 s u c l 1 " t l la ' t E — I -^AKO •• ^ e c a n assume t h a t E, has 

no loop . Since s-dim a p-dinu i s suprosed and Dp i s not 

SI , I-i has to be a tournament. But t h e r e i s no tournament 

with 4 v e r t i c e s which does not conta in Lp as a f u l l sub

graph; i t i s a c o n t r a d i c t i o n . 

I 
/ 3 / n ^ 2 . Then take G ^ -&- + ! ^ ( / n~ a ' n* ) > Cnf*t3)} • 

G i s a f u l l subgraph of I ' ; hence, (J i s a fj-graph and 

s-dimc a = 2. Suppose ni-dimc G=2, G-=-• G-̂  A(*2 vtere G-̂  and 

G- are LH CJ-graphs. Since p-dim -= s-dirn , n e i t h e r G-, 

nor G2 contaris Dp as a f u l l subgraph. Every ve r t ex of G 

i s an i n i t i a l or an end ve r t ex of some edge ; t hus , 

n e i t h e r G- nor G2 conta ins a loop . Hence, &-_ and G2 a re 

tournaments. Since G-J+ L
n H - i> (-* - » n~X) andfc+fl-n-)'/' 

a re edges of Ĝ  and (n~.1, n- ) , (n^h-Ki) are edges of 

Gp. Thus, G2-=--. l n i + j which i s a c o n t r a d i c t i o n . Q.E.D. 
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This finishes also the proof of Theorem 1. 

3. U n d i r e c t e d g r a p h s 

In this part, we are going to study dimensions 

in subclasses of a class C; of all the undirected graphs 

without loops. 

Denote Jr-, the system of all the graphs of a degree 

less or equal to 1. 

Proposition 4* Let 0 be a productive hereditary subclass 

of G. Then s-dim A -*> m-dimc A for every A <=• C iff 

either 0 is trivial, or G -SET, or C__ - Jq. • 

Proof. 1. Suppose that / \ <= C.' ox ^_^ c= £. 

Since <rr^
X^ is a full subgraph of 

in both these cases , s ^ G C_ ancl -n-dim £* = 

« ̂  while s-dim D~ := 2 which is a contradiction. 

Hence, either C_ is trivial, or _C == SET, or C -= G^ . 

2. a/ If C_=- SET then m-dimc •= 1. 

V fix has only two SI graphs : o and j . 

IO (̂ -graphs are just graphs with 2n vertices and n-1 

or n edges and graphs with 2n+l vertices and n edges. 
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One can see e a s i l y t h a t m-dim A £ s-dimn A for every 
c k 

A s C. 

Theorem 2. Let C be a productive hereditary subclass of 

G. Then s-dimc ̂  m-dinu, iff C is trivial. 

Proof^follows directly from Proposition 4 because SET 
) 

and G.̂  does not satisfy the condition s-dimc ~ m-diny,. 
Theorem 3. Let £ be a productive hereditary subclass of 

G. Then p-dirnc ~ m-dimc iff C_is trivial. 

Proof. Suppose p-dim,-, "S m-dim^. Then m-dim. Â -Vs-dinu. A 
.k. i«L C k. 

for every A ^ C. According to Proposition 4, there are 

three possibilities : 

/i/ C is trivial - the assertion holds trivially. 

/ii/ £ = SET. Then m-dimc D-, •= 1 while p-dimc D. = 2 

which is a contradiction. 

/iii/ C. « G, . Then rn-dimc J ^ = 1 whilB: 

p-dimr J *• - 2 which is a contradiction. Q.E.D. 

For a graph G denote (similarly as in DTPjl^SPCG) 

k 
the system of all the full subgraphs of G v/here k is a 

non-negative integer. Denote by E the complete (anti-

reflexive ) graph with n vertices. 

Theorem 4. Let C be a productive hereditary subclass of G* 
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Then s-dimc E p-dimc iff either C-SET , or _C=,SP(E ) 

for some n. 

ZTS9?jf I f £.= §1E o r JL - ^ (Kj then the assertion 

holds. If C^ SP(Kn) then there exists a SI C^graph 

which contains Dp as a full subgraph. Since s-dimr = 

HP-dim 1 D2 ±s s i . Hence, C does not contain „—„ 

and C •=? SET. Q.E.D. 
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