USA 9

Jenö Lehel
On hypergraph coverings

In: Zdeněk Frolík (ed.): Abstracta. 9th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1981. pp. 103--108.

Persistent URL: http://dml.cz/dmlcz/701235

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z$: The Czech Digital Mathematics Library http://project.dml.cz

NINTH WIrTER SCHOOL ON ABSTRAGT ANALYBIS (1981)

ON HYPERGRAPH COYERTMGS

D. Lehel

1. Fefintions

 cabseta called edges chosen fom ejoc fiニ二 seto The odge eet of \bar{E} is cearteat ky $E(E)$ Ird the

The section hyperbraps indaced ky a cet h Civ(E) is a hypareraph mith vertex set a and edge set $\{0 \in E(B) \mid 0 G A\}$. The cartial hypereraif insiced

 ve igtroduce the follsasc . .
$\alpha(H)=$ geak stability nuaber $=$ Eacien eris =alits

 Vertices those viicn ic $7(5)$;
$S_{B}(E)=$ partition number $=$ alnimin cumber of patraise disjoint edges enc zersices mith u=ion V(H);

$$
\begin{aligned}
\prime(H)= & \frac{\text { packing number }}{}=\text { maximum number of pairwise } \\
& \text { disjoint edges of } \mathrm{H} \text {; } .
\end{aligned}
$$

τ. $(\mathrm{H})=$ transversal number $=$ minimum number of vertices $^{\text {n }}$ meeting all edges of H .

A hypergraph is said to be r-uniform if its edges contain just r vertices. an r-uniforim hypergraph with vertex set \mathcal{Z} will be called complete if every r-tuples of \mathcal{V} is an edge. The edge set \mathcal{E} of ar r-uniform hyper graph is called $K_{p}-f$ free if no subset of $E_{\text {generates }} K_{p}$ the r-uniform complete kypergraph of order p.

The set $\left\{\varepsilon_{i}\right\}_{i=1}^{k}$ is called a $k_{p}-$ cover of the $r-$ uni form hypergraph (\hat{j}, ε) if $\sum_{i=1}^{k} \bar{E}_{i}=E$ and every E_{i} is a K_{p} or an edge; k fill be called the size of this K_{p}-cover. A K_{p}-cover with pairwise disjoint elements is said to be a R_{p}-partition.

Let F be a given r-unifora kypergrapk. The F hypergraph H / F of at r-uniform bytergraph H is defined by $v(H / F)=E(H)$ and $E(H / F)=\left\{F^{\prime}=E(H) \mid F^{\prime} \cong F\right\}$.

2.Gezersl results

We give a survey of some recent results concerning various relations between bypergraph numbers defined above. Theorem 1. Every r-uniform kypergraph E satisfies:

$$
\rho_{v}(E)+(r-1) \cdot \nu^{\prime}(E)=|v(E)|=x_{0}^{-}(B)+\tau(E) .
$$

By definition $\rho(H) \leqq S_{0}(H)$, however, in case of graphs $\rho_{0}=\rho$. Thus Theorem 1 has the following corollary: Theorem (T.Gallai [2]), Every simple graph G satisfies:

$$
S(G)+\nu(G)=\alpha(G)+\tau(G)
$$

the next result is a possible hypergraph extension of the well-known könig's theorem, however, its proof (see in [3]) uses the König-Hall theorem itself. Theorem 2. If $\alpha\left(H^{0}\right) \geqq \frac{1}{2} \cdot\left|V\left(H^{P}\right)\right|$ hol ds for every section hypergraph H^{\prime}. of H then $\rho^{\prime}(H) \leqq \mathcal{L}(H) \quad$ -

It is worth to note that the next two statement are trivially equivalent:
(i) $\left.\alpha\left(H^{*}\right) \geqq \frac{I}{2} \cdot \right\rvert\, V\left(H^{9}\right)_{i}^{\prime} \quad$ for every section hypergraph H' of H:
(ii) $\mathcal{L}\left(\mathbb{H}^{9}\right) \geqq \frac{1}{2} \cdot\left|V\left(H^{9}\right)\right|$ for every partial hypergraph H' of H -

Thus the condition in Theorem 2 may be replaced by (ii) Without any consequence.

The analogous problem of describire con-trivial hypergraph classes with $\rho_{0} \leqq \oint$ seems to $b s$ a rather hard question. Perhaps the first instance oy this problem was the well-known Ryser conjecture:

If the vertex set of the r-uniform hypergraph H is partitionned into r classes so that every edze contains.just one vertex from each classes,i.e.. H is an r-partite hypergraph, ther $\quad \tau^{\prime}(\mathbb{E}) \leqq(r-1) \cdot \nu^{\prime}(H)$. By Theorem $1 \quad \tau \leqslant(r-1) \cdot \nu$ iff $\rho_{0} \leqslant \hat{\sim}$ therefore Ryser's conjecture may be restated in the following form:

Conjecture. r-partite hypergraphs satisfy $\int_{0} \leq \mathcal{N}$.

3. Hypergraphs with $p \leq \mathcal{L}$

We present here hypergraph classes with property (1). By Theorem 2 the hypergraphs belonging to theses classes -111 satisfy $\rho \leqslant \alpha$.

The 2-coloration of a hypergraph B is a partition of $V(B)$ into two weakly stable sets immediately implying property (i) :
Theorem _3. 2-colorable hypergraphs satisfy $\rho \leqslant \propto$.
The next observation certainly belongs to the folklore of extremal graph theory:

More than the half of the edges of an arbitrary
graph can be retained to form a bipartite partial
graph.
This observation has the following consequence (see in [4]):
Theorem 4. If Pis a graph with chromatic number greater than 2 then for every graph G the F-hypergraph of G satisfies $\rho(G / F) \leqq \propto(G / F)$.

The observation above can be extended for hypergraphs (see in [3]) which yields our next result:
Theorem 5. For any $1<r<p$ the k_{p}-hypergraph of every r-uniform hypergraph i satisfies $\rho\left(\mathbb{B} / z_{p}\right) \leqq \propto\left(E / K_{p}\right)$ 。

Remark that by the definitions $\rho\left(H / x_{p}\right)$ is the mini tum size of a X_{p}-cover of E and $\alpha\left(H / K_{p}\right)$ is the masis:Man cardionality of a K_{p}-free edge set of H .

Theorem 5 answers a conjecture of B.Bollobás [1] : Corollary. The edge set of every r-uniforii hypergraph of order n can be covered with at most $T(n, p, r) \quad X_{p}{ }^{\prime} \delta$ and edges where $T(n, p, r)$ is the extended Turán number, 1.e., the maximal number of edges an r-uniform hypergraph of order n can have if it does not contain a K_{p}.

Theorem 5 may suggest the question whether the class of K_{p}-hypergraphs satisfy the stronger $\mathcal{S}_{0} \leq \mathcal{L}$. The answer is not known even if $r=2$ and $p=3$ except some special cases settled by Zs.Tuza. Let's remark finally that the analogous question on 2-colorable hypergraphs has a negative answer; P_{r}^{-}the r-uniform hypergraph of the finite projective plane minus one line may be an example which is clearly 2-colorable with weak stability number $r^{2}-2 r+1$ smaller than the partition number $r^{2}-2 r+2$.

P_{3}^{-}

References

[I] E.Eollobás: Extremal problems in graph theory. J.Graph Theory 1 (1977) no.c. 117-123.
[2] T.Gallai:Uber extreme Punct und Kantenmengen. Ann.Univ.Sei.Budapest.Eotvös Sect.Math. 2. (1959) 133-138.
[3] J.Lehel: A covering theorem for hypergraphs. Graph theory coiference to the memory of K.Kuratowski. 1981. Łagbww/Poland/.
[4] J.Lehel,Zs.Tuza: Triangle-free partial graphs and edge covering theorems. (to appear in Discrete Math.).

