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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS ( 1 9 8 1 ) 

ON HYPERGRAPH COVERINGS 

3 . Lehel 

l .Te f ln i t iona 

k hypergraph E i e a c-i •-? d f f i r i .= t r.cr-enjty 

eubeeta cal led edges 'chaser. *ron esne f i n i t e basic 

ae t . The edge eet of E l a demoted by E(E) srd the 

basic set cal led vertex ret of E l a denoted by 7(E). 

The Bcction hypergra;-n indaced t y a cet k CCV(E) 

1 B a hypergraph with vertex aet A and edge eet 

J B € ECH) I e C A J * I h e Partial hypergra:/r. induced 

by a s e t B & E ^ E ) 1 B a hypi-r^rf. ! • : «.-.-& set a 

and the elements of the c3 c Zzrz. i\< ' T ; ^ ee t . 

ve introduce the fo l l c t ing .^z&t.c-.s.: 

dC(H) • weak s t a b i l i t y number « caxin-r errs na l l ty 

of a weakly etable ztz of H = : i . : : . : r-'-mber 

of ver t i ces containing no edc c c l £; 

§ ( H ) • covering number -= minimum number cf edges emu 

ver t i ce s whose union i s 7(E); 

£•(&) B part i t ion number -= nlnlmua number of pa lr t i s e 

d i s jo in t edgee arc vert ices with union V(B); 



W 

y (H) = packing number = maximum number of pairwise 

disjoint edges of H; . 

*£(H) = transversal number = minimum number of ver t i ces 

meeting a l l edges of H. 

A hypergraph i s said to be fcuni.fpra i f i t s edge* 

contain just r ver t i ce s . An r-unifors: hypergraph with 

vertex set 1/ wi l l be cal led complete i f every r-tuples 

of If i s an edge. The edge set £ of an r-uniform hyper

graph i s called K - f ree i f no subset of S generates K 

- - * 

the r-unifcrm complete hypergraph of order p . 

The set L ^ i J i - i i s cal led a K -cover of the r-

uniform hypergraph (jj",^} i f V̂  <S ^ = £ and 

every S.^ i s a Kp or an edge; k d l l be cal led the 

size of th is Kp—cover. A BL,-cover with pairwise d i s jo int 

elements i s said to be a R e p a r t i t i o n . 

Let F be a given r-iiriifora hypergraph. The F -hyper

graph H/r of an r-Ainifcrm hypergraph rf i s defined by 

vCH/F) =ELH) andE(N/F) = [F^E(H) | F^f}* 

2.General results 

We give a survey of some recent results concerning 

various relations between hypergraph numbers defined above. 

Theorem 1. Every r-uriform hypergraph H s s t i s f i e s : 

£,LH\ + (r-l)-V(K) = |Vcjn! = £ ( H } * X&) . 
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By definition ?(H) ^ £*(?) » however, i n case of graphs 

^cs $ • T h u s Theorem 1 has the following corollary: 

Theorem (T.Gallai C--uVEvery simple graph G s a t i s f i e s : 

£ ( G ) + VCG) = CCCG) • tCG) . 

The next result i s a possible hypergraph extension 

of the well-known i^bnig's theorem, however, i t s proof 

Csee i n [3"]) uses the fconig-Hall theorem i t s e l f . 

Theorem 2. I f oC(H») k § |v(H»)'rholds for every 

section hypergraph H*.of H then ${E) -S OCCH) 

I t i s worth to note that the next two statement are 

t r i v i a l l y equivalent: 

(-O GC(H / ^ ^ •{V(H,X for every section hypergraph 

H' of H ; 

(ii) <£{&*) » § '(vCE*)) for every partial hypergraph 

H» of H • 

Thus the condition in Theorem 2 may be replaced by £ i i ) 

without any consequence. 

The analogous problem of describing non-trivial 

hypergraph classes with £*^<C seems to be- a rather 

hard question. Perhaps the f i r s t instance or th i s problem 

was the well-known. Ryser conjecture: 

I f the vertex set of the r-uniform hypergraph H i s 

partitionned into r c lasses so that every edge 

contains .just one vertex from each c l a s s e s , i . e . - H i s 

an r-partite hypergraph, then. £ ( H ) = (r-±) ^(M) . 

By Theorem 1 %&(T-1\V i f f P * £ J C therefore 

Pyser's conjecture may be restated in the following fora: 
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Conjecture. r-partiťe hypergraphs sat i s fy Po^oC • 

^.Eypergraphs wi"th ^ ž £ 

We present here hypergraph c lasses with property ( i ) . 

By Theorem 2 the hypergraphs belonging to theses c lasses 

wi l l satisfy $^<C. 

The 2-coloration of a hypergraph H i s a part i t ion 

of V(H) into two weakly stable s e t s immediately implying 

property (JL) : 

Theorem 3* 2-colorable hypergraphs sa t i s fy § <cC . 

The next observation certainly belongs to the folklóre 

of extremal graph theory: 

More than the half of the edges of an arbitrary 

graph can be retained to form a bipart i te part ial 

graph. 

This observation has the following consequence ( see in [_k])i 

Theorem 4. If F i s a graph with chromatic number greater 

than 2 then for every graph G the F-hypergraph of G 

s a t i s f i e s § (G/F) ;< oC ( G / F ) • 

The observation above can be extended for hypergraphs 

(see in [3^) which yie lds our next resul t : 

Theorem 5. For any K r < p the K -hypergraph of 

every r-unifonn hypergraph E s a t i s f i e s ^(fi/Ep^ < dCÍH/K ^ . 
Renark that by the def in i t ions §(H/K J i s the ainiraia 

s ize of a Z^-cover of H and C£(H/EO i s the Ersiiinun c*rdi-
nal i ty of a K -free edge set of H« 
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Theorem 5 answers a conjecture of B.Bollobas £1] : 

Corollary. The edge set of every r-uniform hypergraph 

of order n can be covered with at most T(n,p,r) K'E 

and edges where T(n fp,r).is the extended Turan number, 

i . e . y the maximal number of edges an r-uniform hypergraph 

of order n can. have i f i t does not contain a Kp« 

Theorem 5 may suggest the question whether the c lass 

of K -hypergraphs sat i s fy the stronger Gc^cC. The answer 

i s not known even i f .r=2 and p=3 except some special 

cases s e t t l ed by Zs.Tuza. Let's remark f inal ly that the 

analogous question on 2-colorable hypergraphs has a 

negative answer; P~ the r-uniform hypergraph of the 

f in i t e project ive plane minus one l i n e may be an example 

which i s c lear ly 2-colorable with weak s t a b i l i t y number 

r 2 -2r*l smaller than th.e part i t ion number r -2r+2. 
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