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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

TRANSVERSE G-STRUCTURES ON 

FOLIATED KAKXFOLDS 

Pierre Kolino 

Let X be a compact connected n-dimensional manifold endowed 

with a q-codimension f o l i a t i o n «*. AH the structures are assumed t o be 

c . 

1. Transverse fields ; transverse G-structures 

Ve denote by P the sub bundle of TM tangent to the leaves 

of the foliation. Q = TK/P i s the transverse bundle of (M,3). 

If X i s a foliated vector f ie ld , i t defines a section X of 

Q. X i s the transverse field associated to X. The set X(M,*) of trans

verse fields has a natural Lie algebra structure. 

Ve denote by E (M,p ,GL(qvR)) the principal bundle of frames 

of Q. E_ i s the bundle of transverse frames of (M, 3 ) . I t i s endoved 
Q 

with a natural structure form 8 , which is a R -valued tensorial form. 

Using 6_, we define on E a lifted foliation 3 _n the following way 

X € T E is tangent to the leaf of 3 at z iff i e_ = i- d6 = 0. 
z z z z 

Ve denote by P the subbundle of TE tangent to the leaves of the 

lifted foliation. 

If e_(M,p ,G) is a G-subbundle of E such that 

P_ c T ( e j Vz € em , 
T z T- T 
z 

e i s a transverse [or fol ia ted! G-structure on ( K . 5 ) [1] [3 ] [43-

2. Transverse parallelisms ; Lie fo l ia t ions. 

If G = {e}, a transverse G-structure on (K,£) i s a transver-
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se parallelism [ l ] [5 ] . Such a structure i s determined by q transverse 

f ie lds {X , . . . ,X, } which are l inearly independant at each point. In 

th i s case, we eay that (M,3) i s a parallel isable fo l ia t ion . 

If , moreover, {I ».„.fX, } i s a basis of a q-dimensional Lie 

subalgebra 9 of i(M,3)9 one says that (M,3) has a structure of Lie 

9-fol ia t ion. Lie fol ia t ions have been studied by Fedida in [ 2 ] . In [ 7 ] , 

ve obtained 

Theorem 1. If (M,3) i s a parallel isable fol iat ion, then the 

closures of the leaves are the fibers of a fibration n : M -» W. 

Moreover, there ex is t s a Lie algebra 9 such that 3 induces 

on each fiber of n a Lie 9-foliation. 

F i r s t part of th is resul t may be also obtained from a theorem of Sussmann 

[ 8 ] . 

If TT.(M) = 0, the s t ructura l Lie algebra 9 i s abelian. Using 

a well-known resul t of Tischler, the f iber of TT admits, in this case, 

a f ibrat ion on *JT, where r = q - dim W. From these remarks, ve deduce 

Theorem 2. If M i s a simply connected compact manifold, M 

admits no 4-codimension parallel isable fol ia t ion. 

3 . Riemannian fol iat ions 

I f G = 0(q), a transverse G-structure on (M,3) i s a 

transverse riemannian s t ructure . We say that (M,3)f endoved vith such 

a structure e , i s a riemannian fol ia t ion. Memannian foliations vere 

introduced by B. Reinhart [7 ] . 

I t i s possible, in this case, to introduce a transverse Levi-

Civita connection u) on e_. Moreover, OL, + 6_ defines a transverse 
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parallelism on (e- ,3 ) . This fact allows us to use results of the pre

vious section in order to study riemannian foliations. Several results 

are obtained in this way ; for example ^ 

Theorem 3.' If (K-3) i s a riemannian fol iat ion, and TT^K) * 0 , 

then there exists an algebra of transverse f ie lds in the center 

of X(Kf3) whose transverse orbits define the closures of the 

leaves. 

Using the same methods- riemannian foliations are classified 

in [6] in codimension £ 3-
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