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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Hales-Jevett's theorem vithout short cycles 

J. Nes'etril and B. Voigt 

The Hales-Jevett class [A] is defined as follovs: 

Definition: Let A be a finite set, k<n be non-negative integers, 

.n [A](k) is then the set of mappings f :n - {0,... ,n-1 } -• A U { XQ,. . . , X-. } 

satisfying (1) f",(Xi)*0 for all i<k and (2) 

min f"!(X.)< min f"!(X.) for all i < j <k . 

Parameter-vords f €[A](J) and g e [A] (£) may be composed yielding 

f.g€[A](£), vhere f-g(i)-f(i) for f(i)€A and f-g(i)-g(j) 

for f(i) -X. . 

Motivation: f € [A] (fc) is the set of embeddings of the k-dimensional 

cube A into An -. vhere the subcube described by f is given by 

{f gl g € [A] (5)} cAn • The following partition theorem vhich is due to 

Hales and Jevett [2] in the case k -0 and due to Graham and Roth

schild [l] for k >0 is well-known and is in fact one of the major 

tools for partition (Ramsey) theory: 

Theorem: Let A be a finite set. V 6,mtk 3n:n---------)(m): , i.e. 

for every coloring A:[A](P)-»6 there exists f €[A](|J) such that 

Af:[A](
m)->6 defined by Af(g) -A(f-g) is a constant mapping. 



We can prove the following strengthening for k «0 : 

Theorem: Let A be a finite alphabet. V 6,m,g 3 S c[A](J) such 

that a S > A^>(m)% , (i.e. for every mapping A : [ A ] ( £ ) - K 5 there 

exists an f 6S such that Af is constant) and 3 the hypergraph 

H°(S) with vertex-set [A](g) and ege set {(fgIg €[A](m)}If 6S> 

has girth at least g (i.e. the m-subcubes in S do no form short 

cycles). 

For k - 1 we only have a result for A - {0} : 

Theorem: V 6,m,g 3 Sc[{0}](°) such that © S * ' >(m) \ and 

gj H ^ S ) has girth at least g . 

These two theorems have many interesting corollaries, here we state 

only a few of them: 

Corollary 1: Let F be a finite field and let 6,m,g be non-negative 

integers. Then there exists a family of affine m-dimensional sub-

spaces of an n-dimensional affine space over F such that (<p for 

every coloring of the affine points in Fn with 6 many colors 

there exists an m-dimensional subspace in S with all its affine 

points colored the same and (£" the m-dimensional spaces in S do 

not form cycles shorter than g . 

Corollary 2: Let F be a finite field and let 6,m,g be non-ne

gative integers. Then there exists a family of m-dimensional homoge

neous subspaces of the n-dimensional vector space over F (for sone 

sufficiently large n ) such that © for every coloring of the 1-di-

mensional homogeneous subspaces of the n-dimensional vector space 

with 6 many colors there exists an m-dinensional honogenenous 
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subspace in S with all its 1-dimensional subspaces colored the 

same and © the m-dinensional subspaces in S do not form cycles 

shorter than g (with respect to intersection in 1-dimensional sub-

spaces) • 

Corollary 3: Let A x • 0 be a homogeneous partition regular system 

of equations (see [3]). Then for every pair 6,g of non-negative 

integers there exists a family S of solutions of A x «-0 such 

that © for every coloring A: US -»6 there exists a monochromatic 

solution in S and © the hypergraph S does not contain cycles 

shorter than g . This generalizes a result of Spencer's [4] for 

arithmetic progression, moreover, we have a constructive proof for it. 

Details will appear elsewhere. 
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