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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

ISOnOHPHISI-!S OP PRODUCTS 

J. Vinare-k 

Problems of isomorphisms of products have 

"been studied for various structures, namely al

gebraic, relational and topological ones. In 1933, 

S. Ulan put a problem ( see [6] ) whether there exist 

two non-homeomorphic topological spaces X, Y such 

that X 2 and Y2 are homeomorphic. Ulara's problem 

was solved positively by R. H. Pox in 1947 (see [ lj). 

In 1957i w. Hanf (see £2]) constructed a Boolean 

algebra B isomorphic to B* but not to B 2 . (obviously, 

putting C = B, D = B 2 one obtains non-isomorphic 

Boolean algebras with isomorphic squares.) By f 3], 

the similar assertion is true also for locally 

compact metrizable spaces. 

The problems mentioned can be generalized as 

problems of representations of commutative semi

groups by products in a following way : let ( S, + ) 

be a commutative semigroup, C a category with finite 

products. A collection {x(s) ; se sj of objects of C 
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i s called r* representation of (S,+) by products 

in C i f the following t^o conditions are s a t i s f i e d : 

(1) X(s + s ^ i s isomorphic to X(s) X Xfs'J for 

a l l s , s ' € S ; 

(2) X(s) i s isomorphic to X f s ^ i f f s = s T 

The representation of corn-nut at ive semigroups 

"by products in various structures has been invest igated 

at the Seminar on General Mathematical Structures 

i n Prague, under the leading of V, Trnkovd. 

A survey on representations of commutative 

semigroups i s given in £ 4 ] • Let us r e c a l l 

Trnkova's general method for constructions of 

productive representations : 

According to [4 ] > any connutative semigroup 

i s isomorphic to a subsemigroup of (exp N ° * c a r d s^+/ 

(where the addit ive operation + on the power-set 

exp ]T K o ' c a r d S i s defined by 

A+-B = {hGlT*°' c a r d S 1 ( 3 f e A , g e B)(Vae* c -card s) 

(h(a)= f(a)+ g(a))}) 

Thus, it suffices to construct for any subset A of 



m 

..*5 • c a r d ^ / \ 
37 ° an object X(AJ of a .riven category such 

t h a t for every A, B £ exp Vm^cax6 S ^ f o l l o v . i n s 

two conditions hold : 

(i) X(A-r-B) is isomorphic to X(A)* X(BJ, 

(ii) X(A) is isomorphic to X(B) iff A = B . 

I f a given category has a r b i t r a r y products 

and coproducts and i f the d i s t r i b u t i v i t y of 

f i n i t e products and a r b i t r a r y coproducts i s 

s a t i s f i e d , i t suf f ices to find a c o l l e c t i o n 

LXa • a e3~$ ( v / h e r e ^ i s the f i r s t o rd ina l vrith 

card y ->10* card S) such t h a t for every 

A, B e exp w t he following condi t ion holds : 

(*9 - 4 r - ^ T T x ^ a ) i s isomorphic t o 
Zr h G A a£y a 

\L _LL T T x ^ a ) iff A=B. 
2 r ke B aex 

Representations of semigroups by products 

of topological spaces have been investigated 

with respect to special properties, namely the 

connectedness, the ©-dimensionality and the 

metrizability. V/hile V. Trnliova constructed in 

[53 a connected metric space X ho:neomorphic to 
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1? but not to X ( and more generally, she proved 

that every f in i te ly generated Abelian group can be 

represented by products of connected metric spaces ) f 

the similar problem for metric O-dinensional spaces 

was s t i l l open. Jloreover, V. Trnhova proved that i f 

a compact metric O-dimensional space Y iE homeomorphic 

* 2 

to Y^ then it is also homeomorphic to Y . 

In the present note, there is given a si:etch of 

a construction of a metric O-dimensional spaae vtfiich 

is isometric to its cube tut which is not homeomorphic 

to its square (moreover, every commutative semigroup 

has a representation by products of metric O-dimensional 

spaces). 

Denote by C the category of metric spaces with a 

diameter ̂  1 and lipschitz mappings with a constant ^ 1. 

Obviously, C has arbitrary products and coproducts. 

(if I is a set and { (X^ , ^ ) ; i e l } i s a collection 

of objects of C then T T fa , ? ,) • ( T T L , ^ ) 

l€X ^ * i e l ^ 

where ?l( x±) i € z § (y±)±e z ) =- sup^ ^ ^1 <x± -y±> • 

One can see easi ly that the functor assigning to 
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each .metric space (X , f ) a topological Fpace 

with the topology induced by (? preserves f i n i t e 

products and arbitrary coproducts. 

Now, an application of Trnkova's general 

method i s the following : for every a^j* find 

a O-dimensional obj ect X& of C such that ( *) 

i s s a t i s f i e d and for every f e -S *̂ the space 

IT x£' a ^ i s also O-dimensional. 
aer -
SS-BSJl^iiE?*. ^ o r e v e r y a € y choose a set of 

cardinal numbers Ba . = £ / 3 a n ; ne II} such that 

the following conditions hold : 

2 r < ^ o , o • / J a l n < P&, n+1 • 

^a.o > ( s u p lfi\> ' ^ ^ a J ) r w h e r e 

^b - BUP lP i , ,n * n ^ H l . l e t 

be the Cantor set (with the usual metric ) , 

Cn = Ez.r11-1,*-*]^ C, D=- {2.3"n , nGlT^{0}}u 

u [ 0] (''gain vdth the usual rea l - l ine metric )m 
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?or every a e y aefine a netric space X by glueing 

3_ „ cories of Cn to the point 2*3 ** of D as 
c->f n •-> 

shown in the picture . 
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The proof of (X-) and of the 0-di.raensionality 

of products TT xf ^ *-ill *e published in [ 7 3 . 
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