USA 9

Jiří Vinárek
 Isomorphisms of products

In: Zdeněk Frolík (ed.): Abstracta. 9th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1981. pp. 185--191.

Persistent URL: http://dml.cz/dmlcz/701251

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z$: The Czech Digital Mathematics Library http://project.dml.cz

NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

ISCI ORPPHISITS OF PRODUCTS
J. Vinárek

Problems of isomorphisms of products have been studied for various structures, namely alEebraic, relational and topological ones. In 1933, S. Ulam put a problem (see [6]) whether there exist two non-homeomorphic topological spaces X, Y such that X^{2} and Y^{2} are homeomorphic. Ulam's problem was solved positively by R. H. Fox in 1947 (sec []]). In 1957, W. Hanf (see [2]) constructed a Boolean algebra B isomorphic to B^{5} but not to B^{2}. (Obviously, putting $C=B, D=B^{2}$ one obtains non-isomorphic Boolean algebras with isomorphic squares.) By [3], the similar assertion is true also for locally compact metrizable spaces.

The problems mentioned can be generalized as problems of representations of commutative semieroups by products in a following way : Let $(S,+)$ be a comatative semigroup, $\underset{\text { c a category with finite }}{ }$ products. A collection $\{X(s) ; s \in S\}$ of objects of \underline{C}
is called s representetion of $(S,+)$ by products in \mathbf{G} if the following tro conditions are satisfied :
(1) $X\left(s+s^{\circ}\right)$ is isomorphic to $X(s) \times X\left(s^{\circ}\right)$ for all.s, $s^{\prime} \in S$;
(2) $X(s)$ is isomorphic to $X\left(s^{\prime}\right)$ iff $s=s^{\text {: }}$

The representation of comnutative semigroups by products in various structures has been investigated at the Seminar on General Mathematical Structures in Prague, under the leading of V. Trnkova.

A survey on representations of commutative semigroups is Eiven in [4]. Let us recall Trnkovás general method for constructions of productive representations :

According to [4], any commatative semicroup is isomorphic to a subsemigroup of (exp $N^{\text {So }}$-card $\mathrm{S}_{\mathbf{y}}+$) (where the additive operation + on the power-set $\exp \mathrm{H}^{\gamma_{0}}$-card S is defined by $A+B=\left\{h \in \mathbb{N}^{H} \cdot \operatorname{card} S ;(\exists f \in A, g \in B)\left(\forall a \in \mathcal{S}_{c} \cdot \operatorname{card} S\right)\right.$

$$
(h(a)=f(a)+g(a))\})
$$

Thus, it su:fices to construct for any subset A of

1. \%ocard S an object $X(A)$ of a qiven catezory such that for every $A, B \in \exp I H^{\text {Horari }} S$ the folioring two conditions hold :
(i) $X(A+B)$ is isomorphic to $X(A) \times X(B)$,
(ii) $X(A)$ is isoroorphic to $X(B)$ iff $A=B$.

If a given category has artitrary products and coproducts and if the distributivity of finite products and arbitrary coproducts is satisfied, it suffices to find a collection $\left\{x_{a} ; a \in \gamma\right\}$ (where γ is the first ordinal with card $\gamma=\psi_{0}$.card s) such that for every $A, B \in \exp 1^{\gamma^{2}}$ the following condition holds : (*) $\frac{\|}{2^{r}} \frac{\|}{h \in A} \prod_{a \in \gamma} x_{a}^{h(a)}$ is isomorphic to $\frac{\|}{2^{\gamma^{g}}} \frac{\|}{k \in B} \prod_{a \in \gamma} X_{a}^{k(a)}$ iff $A=B$. Representations of semigroups by products of topological spaces have been investifated with respect to special properties, namely the connecteuness, the O-dimensionality and the metrizability. While V. Trilová constructed in
[5] a connected metric space X ho:neomorphic to
X^{3} but not to \bar{x}^{2} (and Fore $\varepsilon \in n \in r a l y$, she proved that every finitely generated abeliar. group can be represented by products of connected metric spaces), the similar problem for metric o-dimensional spaces was still open. Moreover, V. Trnloova proved that if a compact metric 0-dimensional space Y is homeomorphic to Y^{3} then it is also homeomorphic to Y^{2}.

In the present note, there is given a sisetch of a construction of a metric O-dimensional space which is isometric to its cube but which is not homeomorphic to its square (moreover, every commutative semigroup has a representation by products of metric 0-dimensional spaces).

Denote by $\underline{\mathbf{G}}$ the category of metric spaces with a diameter ≤ 1 and Lipschitz mappings with a constant ≤ 1. Obviously, \mathbf{C} has arbitrary products and coproducts. (If I is a set and $\left\{\left(X_{i}, \rho_{i}\right) ; i \in I\right\}$ is a collection of objects of \underline{G} then $\prod_{i \in I}\left(x_{i}, \rho_{i}\right)=\left(\prod_{i \in I} x_{i}, \rho\right)$ where $\rho\left(\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I}\right)=\sup _{i \in I} \wp_{i}\left(x_{i}, y_{i}\right)$. One can see easily that the functor assigning to
each metric space (x, ρ) a topolocical space with the topology induced by ρ preserves finite products and arbitrary coproducts.

Now, an application of Trnková's general method is the following : for every a $\in \gamma$ find a O-dimensional object X_{a} of $\underline{\mathbf{C}}$ such that (x) is satisfied and for every $f \in)^{\gamma-}$ the space $\prod_{a \in \gamma} X_{a}^{f(a)}$ is also 0-dimensional.
Construction. For every a $\in \gamma$ choose a set of cardinal numbers $B_{a}=\left\{\beta_{a, n} ; n \in I\right\}$ such that the following conditions hold :

$$
\begin{aligned}
& 2^{\gamma}<\beta_{0,0}, \beta_{a, n}<\beta_{a, n+1}, \\
& \beta_{a, 0}>\left(\sup \left\{\beta_{b} ; b<a\right\}\right)^{\gamma} \text { where } \\
& \beta_{b}=\sup \left\{\beta_{b, n} ; n \in I T\right\} \cdot \text { Let } \\
& \left.c=[0,1]=\bigcup_{n=1}^{\infty} \sum_{i=1}^{\frac{3^{n}-1}{2}}\right] \frac{2 i-1}{3^{n}}, \frac{2 i}{3^{11}}[
\end{aligned}
$$

be the Cantor set (with the usual metric) ,

$$
c_{n}=\left[2.3^{-n-1}, 3^{-n}\right] \cap c, D=\left\{2.3^{-n} ; n \in \mathbb{N} \backslash\{0\}\right\} \cup
$$

$\cup\{0\}$ (rain with the usual real-line metric).

For every a er refine a metric space x_{ε} by Eluting $\beta_{a_{3} n}$ caries of C_{n} to the point 2.3^{-n-1} of D as shown in the picture.

The proof of ($*$) and of the 0-dimensionality
of products $\prod_{a \in \gamma} X_{a}^{f(a)}$ rill be published in [7].
References
[I] R.H. Fox : On a problem of S. Wham concerning

$$
\begin{aligned}
& \text { Cartesian products, Fund. ISth. } 34 \text { (1947), } \\
& 278-287 .
\end{aligned}
$$

[2] Thant : On rome fundamental problems concern-
ing isomorphism of Boolean alfelras, Yath. Scand. 5 (1957), 205-217.
[3] V.Trnková : x^{n} is homeomoṛphic to x^{m},iff $n \sim m$, where \sim is a congruence on natural numbers, Fund. Ilath. 80(1973), 5l-56.
[4] V.Trnlová : Isomorphism of products and representation of comilative semigroups, Coll. Nath. Soc. J. Bolyai 20(1976), 657 - 683.
[5] V.Trnkova : Homeomorphisms of povers of metric spaces, Comment. Math. Univ. Carolinae 21 (1980), 41-53.
[6] S.Ulam : Problem, Fund. Math. 20(1933), 285.
[7] J.Vinárek : Representations of comizutative semigroups by products of metric O-dimensionel spaces, to appear.

