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BANACH-STONE THEOREMS FOR NON-SEPARABLY VALUED BOCHNER L -SPACES 

Peter Greim 

1. INTRODUCTION 

In the author's talk at the conference an example has been 

given for the fact that a plausible seeming description of the ex­

tremal points in a Bochner space Lp(y,V), in terms of their values, 

that is valid for separable V, cannot be generalized to non-sepa-

ble spaces. An essential tool for this construction was the Stonean 

space of y's measure algebra. Meanwhile this example has been pub­

lished elsewhere [4]. 

One of the goals of this article is to give a positive result 

for non-separable spaces in a similar problem (relating geometric 

properties of L (y,V) to those of V ) . In [2] Cambern has shown a 

Banach-Stone theorem for Hilbert space-valued L°°(y,V): let y be a 

a-finite measure and V a separable Hilbert space, then each isometry 

T of L°°(y,V) onto itself has the form 

Tx (s) = U(s) (<Dx) (s) , 

where <S> extends a suitable Boolean isomorphism of y's measure alge­

bra and the U(s) are isometries of V onto itself. Although Cambern 

used Hilbert space methods, it turned out that his result holds for 

the rather large class of all separable spaces with trivial central-

izers [5]. (For the notion and properties of the centralizer Z(X) 

of a Banach space X we refer the reader to [ 1 ].) As in the problem 

mentioned in the beginning, the separability of V was essential for 

the proof. In this article we give a generalization of Cambern1s 

theorem into the other direction, namely, concerning the density 

character of V. We shall prove a Banach-Stone theorem for all Hilbert 

spaces, with arbitrary dimension. In fact we show more: 

Theorem 2: Let (ft . ,L , . ,y i) be o-finite non-zero measure spaces 
and V. 5* {0} Banach duals with trivial centralizers (i=1,2). Then 
each surjective linear isometry T:L (y^V..) <r—> L (v-*^?) ^a8 ^he 
form Tx (s) = U(s)($x)(s) , 
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where $ extends a Boolean isomorphism of the measure algebra T.«/)\ + 
onto T.j/]i~ and U is a strongly measurable operator-valued function 
such that all U(s) are norm one operators from V. into V~. 

As in [5], we shall derive Theorem 2 from a description of 

Z(L°°(u,V)) (see Theorem 1 below). We have not been able to show 

that the U(s) can be chosen to be surjective isometries . 

A second goal of this article is the following. Apart from se­

parability, the Banach-Stone theorem in [5] requires a trivial cen-

tralizer of V, which in particular rules out all non-trivial CK-

spaces V (K compact), since Z (CK) -=- CK. In the situation of vector-

valued continuous function spaces C(L,V) this seems to be an ad­

equate restriction (see [1, Theorem 11.16(ii)]). In general, CK-

spaces do not even have the Banach-Stone property. (We say that V 

has the Banach-Stone property if for each pair of compact spaces L. 

the spaces C(L.,V) are isometrically isomorphic if and only if the 

L. are homeomorphic.) However, for measurable function spaces we can 

show the following. 

Theorem 4: Let (ft.,E.,u.) be as above and K >*- 0 connected and 
oo 

compact. Then the spaces L (u.,CK) are isometrically isomorphic if 
and only if the measure algebras Z./\i. are isomorphic. 

Although we require connectedness, this is still better than 

what we get in the context of vector-valued continuous function 

spaces. For example, C[0,1] does not have the Banach-Stone property 

[1, p. 143]. 

We mention some notations. [X] denotes the Banach space of all 

bounded linear operators of a Banach space X into itself. The con­

stant function with value v is denoted by v , and the characteristic 

function of a subset A by xA (where the domain of the functions is 

understood). If x and h are V- and [V]-valued functions resp. with 

the same domain, then |x| and <x,h> denote the functions t » * 

||x(t)|| and h(t)x(t) , resp.. Strong measurability of h means that 

for all v in V the function <v,h> is measurable. Sometimes we dis­

tinguish between functions x on ft and their equivalence classes mo­

dulo equality almost everywhere, [x]. The definition of L (u,V) and 

the elementary properties that we need can be found in [3]. Since 

the completion of a measure does not affect the notion of (Bochner) 
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measurability, we assume throughout that all measures are complete. 

2. DUAL SPACES 

The main tool in this section is a vector-valued lifting. Let 

M (y,V) denote the Banach space of all bounded Bochner-measurable 

V-valued functions, endowed with the supremum norm || || . If instead 

we supply M (y,V) with the essential supremum || || as seminorm, 

the corresponding normed space is L (y,V) . A linear || || -|| || -
oo oo e s s 0 0 

isometry a:L (y,V) > M (y,V) is called a lifting, if for each 
00 

equivalence class x in L (y,V) ax is an element of x . 

Proposition 1: Let V be a Banach dual. Then there is a multi­

plicative lifting p:L (y,HK) > M (y,IK) satisfying Pj_ = 1 • For 

each such p there is a lifting a:L (y,V) > M (yjV) such that 

(1) av = v for all v in V and 

(2) |ax| < p|x| for all x in L°°(y,V) . 

Note that for arbitrary Banach spaces V it is easy to find a lifting 

with respect to || || on M (y,V) (use a Hamel basis of L (y,V) ) . 

The point is that we require ||ax|| = Haxll^ for all x , which 

is not possible in general. The author is grateful to D. Fremlin for 

pointing out to him that c may serve as a counterexample. 

The proof of the above proposition can be found in [6,Theorem 

IV.3, Propositions VI.1 and VI.2], when the scalars are real. The 

fact that a selects all constant functions from their equivalence 

classes is not explicitly stated but immediate from the construction. 

Similarly, the inequality (2) is a consequence of 

|<ax,:z>| = |p<x,_z>| = p|<x,z>| < p|x| 

( z in the predual of V , ||z|| <1 ; see [6, p. 76 (3), p. 35 (2'), 

and p. 34 (IV)]. In the complex case it is easy to see that the same 

proof works if we replace p by p(f + ig) := pf + i pg and observe 

that the multiplicativity of p , inherited from p , implies 

p|h| = |ph| . --

The first step in order to determine Z(L (y,V)) is the follow­

ing lemma. 

Lemma 1: For h in L (y,[V]) and x in L (y,V) define 

M^x := <x,h> 

Then h i =-- vu 

[L (y,V)] , mapping L (y,Z(V)) into Z (L (y ,V) ) . 

Proof. Obviously M h is well-defined and satisfies ||Mh|| < 
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||h|| . For the reverse inequality it suffices to show that the 
ess 

(linear) mapping h » • M, is isometric on the dense subspace of 

countably valued functions. This however is clear - for h = 

£i=-lRixA. l o o k a t x := ^i--lvixA w i t h llvi.H=1' llRiV.H ^||R.|| -e 
i i 

(w.l.o.g. V ^ {0}). The proof of the inclusion L°°(u,Z(V)) c 

Z(L (u,V)) is essentially contained in [5, Proposition 1] (replace 

"strongly measurable" by "measurable"). • 

Theorem 1: Let V be a dual space. Then L°°(u,Z(V)) « Z(L°°(y,V)) 

under the embedding of Lemma 1. 

The proof is a simplified version of [5, Theorem 1], We have to 

show "3". First we restrict ourselves to the case IK = 1R . Namely, 

if for IK = (C we denote by X the underlying real space of a Banach 

space X , then L°°(y,Z(V)) = L°° (y , Z (V^) ) + i L°° (y ,Z (V^) ) and 

Z(L°°(y,V)) = Z(Lro(y,VIR)) + iZ(L°°(y,V:iR)) [1, Theorem 3 .1 3 (i) ] . For 

the rest of this proof we distinguish between measurable functions 

x:fi *- V and their equivalence classes [x] . Let R€Z(L (y,V)) , 

w.l.o.g. ||R||=1 . Choose a lifting a as in Proposition 1 and de­

fine an operator R t on V (t £ ft) by 

Rtv := a(R[v])(t) 

Evidently R is linear, ||Rt|| < 1 , and the mapping t 1 • R. is 

strongly measurable. In order to verify Rt € Z(V) it suffices to 

show that 

||u±v|| <a implies ||u±Rtv|| < a (u,v€V, a > 0) 

[1, Theorem 3.12] . Now || [u] ± [v] || = ||u±v|| < a implies 

|| [u] ± R[y] || < a [1, loc. cit.], hence 

||u±Rtv|| = ||p[u](t) ± p(R[v])(t>'|| < ||p([u] ±R[v]) || <; a . 

Thus t i » h(t) := R. is a strongly measurable bounded mapping 

with values in Z(V). Since V is a dual, the norm and strong topolo­

gies on Z(V) coincide [1, p.155, Example 5]. Lemma 3 in [5] then 

shows that h is Bochner measurable, hence an element of L°°(y,Z(V)). 

It remains to show M, = R . M, and R coincide on the constant func­

tions. Since both operators commute with the characteristic projec­

tions x 1 * x x , A G E , they coincide on all countably valued 

functions, hence everywhere in L (y,V). a 

Now we shall prove Theorem 2. Since the centralizers of V. are 

trivial, i.e. Z(V.) ---IK, the conclusion of Theorem 1 is 

Z(L°°(y. ,V.)) -* L°°(y.) . Thus the isometry T:L°°(ylfV,) < * L°°(y2,V2) 
CO 00 

induces an isometry between L (y,) and L (y2) that can be exten-
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ded to an isometry $ of L^y^V.,) onto L°°(y2,V1) in such a way 

that the isometry S := To$~ :L° (\i2,V.) <—* L°°(y2,V2) satisfies 

(3) SxAy = XASy (y G L°°(y2,V2) , A € E 2 ) 

(see [5] for details). 

It remains to show that S has the form 

(4) Sy (s) = U(s)y(s) 

with U as in the statement of the theorem. Let p and a. be 

liftings of L (y2) and L (y2,V.) resp. as in Proposition 1 (i = 1,2). 

(3) implies that |Sy| = |y| a.e.. This together with (2) gives 

(5) |a2(Sy)| < p|Sy| = p|y| 

Now define U(s)v := a2(Sv)(s) 

Trivially U(s) is linear and U is strongly measurable. From (5) 

it follows that ||u(s)v|| < ||v|| , and, since | U (•) v| = || v|| a.e. for 

any v ^ O , we have ||u(s)|| =1 for all s outside a null set N . For 

s £ N replace U(s) by any norm one operator from V1 into V2. In order 

to verify (4) we note that the strong measurability of U implies 

that also U(-)y(-) is measurable, and evidently Sy(s) := U(s)y(s) 

defines a bounded operator S of L°°(y2,V1) into L (y?,V2) that coin­

cides with S on all countably valued functions, hence S = S . n 

3. CK-SPACES 

In order to argue as in the proof of Theorem 2 we have to re-
00 00 

place Z(L (y,V)) by a subspace isomorphic to L (y). The Cunningham 

^-algebra C^ (X) of a Banach space X is the closed subspace of Z (X) 

generated by the idempotents of Z(X). These idempotents are exactly 

the ^-projections, i.e. projections P satisfying ||x|| = 

max { ||Px|| , ||x - Px|| } (x € X) [1 , pp. 31 and 72] . 

Proposition 2: Assume the conclusion of Theorem 1 holds. Then 
, , oo oo 

the l^-proQect^ons of L (y,V) are exactly those elements of L (y,Z(V)) 

whose values are M-projections' of V almost everywhere. 

00 

Proof. L (y,Z(V)) is a Banach algebra with the pointwise multi­

plication, and the mapping M is obviously multiplicative. Since 

the M-projections are the idempotents, the statement of the proposi­

tion 

h(t) 

2 2 
tion is just the trivial fact that h = h if and only if h(t) = 

Theorem 3: Let K be compact. Then under the embedding of Lemma 1 

L°°(y,CK) -* Z(L°°(y,CK)) 

L (y) cs- C (L (y,CK)) if K is connected. 
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Proof. As an abstract M-space with unit, L°°(y,CK) is isometric-

ally isomorphic to its centralizer. However, we can see more directly 

that the embedding M# maps L°°(y,Z(CK)) = L°°(y,CK) onto Z (L°°(y ,CK) ) , 

if for R in the latter space we look at h := R(l) , where I is 

the constant function on ft taking the constant function 2 o n K a s 

value: Since for all geL°°(y,CK) M is in the centralizer, it 

commutes with R , and so we have 

Rg = R(M (1)) = Mg(RQ)) = <h,g> = Mhg , 

hence R = M, . (Observe that the action of g(t) €CK as an element 

of Z(CK) is just the multiplication in CK.) 

As to b), the above proposition shows that M# maps COT(L (y,CK)) , 

the space generated by the M-projections, into L (y,Coo(CK)) , which 

is isomorphic to L (y) , since CK has only trivial idempotents. 

Since L (y) is generated by the simple functions and these corres­

pond to finite linear combinations of characteristic projections in 

L (y,CK), which are clearly M-projections, the reverse inclusion is 

also shown. D 

Now we can easily prove Theorem 4. The "if" part is straight­

forward (see [5]). Conversely, if T:LOT(yi,CK) « * L°°(y2fCK) is an 

isometry, the corresponding isometry between the operator spaces, 

<J>R := TOROT" , sends M-projections into M-projections and conse­

quently maps Coo(L°°(yi ,CK) ) c± L°°(y1) onto C^ (L°° (y2 ,CK) ) -*L°°(y2) . 

The classical Banach-Stone theorem for L°°(y) then says that the 

Boolean algebras £./y. are isomorphic. More directly, if we rest­

rict $ to the Boolean algebra of all M-projections of L (yi,CK) 

which in view of Proposition 2 is isomorphic to Ei/yi , we have the 

desired isomorphism. D 
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