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DIFFERENT APPROACHES TO STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS 

G. J tschk 

Different approaches to stochastic parabolic differential equations 

with a multiparameter "white noise" on the right hand side are re

viewed, which turn out to be equivalent. Some important properties 

of the solutions, especially the distribution in function space, 

are given. 

1. Motivation 

Two concepts more and more enter into modern physics, namely non-

linearity and stochasticity. Especially the theory of selforganiza

tion in non-equilibrium systems is fully governed by the counter-

play of these two aspects of matter /7/. Nonlinear systems may have 

several stationary states being stable or unstable against small 

perturbations. In macroscopic systems such perturbations occur in 

form of random fluctuations which not only enable the system to 

leave an unstable state but may determine essentially the further 

evolution. So a stochastic description is inevitable* 

In the following we will consider the nonlinear stochastic partial 

differential equation of parabolic type 

Bu(t,x)/3t = D-(32u/ax2) + f(u) + c-5(t,x) , D>0 , 
(D 

te [0,TK, xe [0,L]*J, u(ttO) -= u(t,L) = 0, u(0,x) = uQ(x) . 

This is a stochastic reaction-diffusion equation and describes the 

interaction between local production of a chemical substance (with 

the nonlinear rate function f, usually polynomial) and its spatial 

transport by (linear) diffusion. 

The internal fluctuations are modelled very globally by adding a 

random source term which is assumed to be a spatio-temporal "white" 

Gaussian noise, i.e. a Gaussian random field with 
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E5tx -= 0 , BJtx3t,xf - S(t-t'W(x-x') , (2) 

the constant c controlling the strength of the noise. The Gaussian 

assumption is suggested by the central limit theorem and the 

"white" character idealizes the fact, that the correlation time 

and length of the noise are extremely small compared with typical 

values of the macroscopic system. (In physics equations of type (1) 

are called LANGEVIN eguations.) 

The problem is to give a unique sense to such a (heuristic) equation 

and to develop a mathematical calculus to treat it. 

There are (at least) two different approaches leading to different 

techniques: 

(i) tutx-* *s a r e a^ number-valued field with two parameters t,x , 

(ii) [u-v(0) is a function-valued process with one parameter t 

(Note that for convenience we often write u. instead of u(t,x), 

Pt instead of P(t) and so on.) 

The aim of this lecture is to give a short review on the above 

mentioned subject, i.e. to describe the starting point and to state 

the main results. Proofs are omitted or only sketched and details 

can be found in the references. One important thing is to point out 

the equivalence of these two approaches which are found independent

ly in the literature. 

One remark should be added. At the beginning the case of white 

noise requires a certain mathematical investment (i.e. a stochastic 

calculus), but then very useful results are the outcome (f.e. the 

Markov property of the solutions, moment equations) as they have 

been obtained already by physicists with less rigorous methods. In 

more realistic (but also more complicated) models $ should be sub

stituted by a "coloured" (or still more general) noise 5 with 

E3t = 0 and (piecewise) continuous paths (f.e. a Gaussian random 

field with a suitable covariance EJ+x^t'x1 = **(*""*' »x»xt)) • Then 

equation (1) will be understood as a family of equations indexed by 

all individual realizations of the noise. 

Shall in the following for the time being be f a 0 (the nonlinear 

case is treated in section 6). For real noise the integration of (1) 

can be done pathwise, t • 

utx} * /^ttxty)tt0(y)dy
 + c / J G(t-s,x,y)3(s,y)dyds , (3) 

0 0 0 

where G is the Green's function of the deterministic problem. This 

formula gives some hint how to treat the white noise case. 
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2. Real-valued field approach 

Shall be given a probability space CO.,?,?). Basic object is the 

^SlESr^SiSE Wiener £i®lil lwtxi * (t»x)e7*3> (°r more general 
(t,x)« 1R ). It is Gaussian with the moments 

EWtx s ° • 1WtxWt'x' " (^^'H^AX') 

and has P-a.s. continuous sample paths /4/-/17/. 

Now one can introduce a stochastic integral with respect to the 

Wiener field W. Because; c is constant and G is deterministic it is 

sufficient to consider only non-random integrands. The integral 

'gsydwsy , íius2«(:r*.Ď ) 
M 
/< 

can be understood as an integral with respect to a random probabi
lity measure V™ , derived from the Wiener field, 

Vw([8,t)«[y,x)) - W t x-W t y-W s x +W s y . 

It is defined at first for simple functions, constant on rectangles, 
and then extended in the standard way to arbitrary functions 
ge £ (3**3.*). (For more details see /15/f if g is allowed to be 
random see /3/f/l6/.) If we choose M = Loft] * [ofx] and vary t 
and x we get a two-parameter random field. Because g is non-random 
and the definition is linear, it is Gaussian with vanishing expec
tation and covariance 

i i 
r V t Ať f xAxV , (4) 

gdW- J gdw) = íg (s.y)dsdy. 
" l"tO,x'J ' 0 J 0 J 

iu_ = ÍG(t,x,y)u (y)dy + c- /G(t-s,x,y)dWnv . (5) 
0J ° to.tlo s y 

,x] tofvj-iofxa 
Now we can define: The (mild) solution of equation (1) shall be 

L 
ltx " Qj - - — o — - [oftJ*» 

This is motivated by the following assertion: 

"^ i^tx )n=1 *̂s a s e c- u e n c e °^ processes allowing pathwise solu

tions tutx ln«1 o f t h e f o r m ^ a n d 

f J l v ) d s d y > w t x 
in the sense of the convergence of all finite-dimensional distri-

(rc*n 
butions, then (under some technical condition) \i)z ' converges 
to the solution u. in (5) in the same sense /10/. (For a smaller 
class of approximating noise one can even get weak convergence. 
Another special approximation is given in /15/») 
By definition, the solution (5) fulfills boundary and initial con
ditions of (1). Using standard criteria for Gaussian fields one 
can proof that u^ x has P-a.s. continuous paths /15/. 
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3« Function-valued process approach 

We want to consider the solution of equation (1) as a random pro

cess in t€3* with values in a space of functions of the spatial 

coordinate x«fc . The choice of a suitable function space is of 

great importance, but for simplicity we will choose the Hilbert 

space H = * 2(3). 

Shall be given a probability space (il,J,P). Basic object is now 

the Wiener cylindrical process {z+^teJT , --SL. 
_ ̂  b.(t)-e. , 

i=1 x -1 

where \e.) . .. is an orthonormal basis in H and 

ib.(t)j. = 1 , te^T , are independent standard Wiener processes in IR . 

This definition looks rather formally, but it means that z. is an 

object all projections on finite dimensional subspaces of H being 

Gaussian distributed and determined by 

E(zt,ei)H(zt,e;j)H = t^.. Vt«T . 

Regarded on H {z.^ only induces a Gaussian cylinder measure with 

expectation 0 and covariance operator 

Cov(zt,z^.,) --(tAt*)-! , 

I being the identity operator. 

Another possibility to introduce z. is to consider it as a random 

linear functional in D'( 2 ) /12/. 

Now we will define a stochastic integral of non-random integrands P 

with respect to z for Fs £2(T; tt2)(H)) , i.e. Pt is a Hilbert-

Schmidt operator for all t^T and « 
1г 2 

í/oï(H) dt <oo 

Then we put . oo . 

oJF8dzs = E o J v i d b i ( s ) . (6) 

the integrals on the right hand side being understood in the sense 

of Bochner, so that this definition is reduced to usual stochastic 

integrals with respect to one-dimensional Wiener processes. The 

stochastic integral (6) is then an H-valued random process in t 

with vanishing expectation and covariance operator 
tf t' tAt» # 

Cov( Jp 8dz 8 , ofP8dz8) « o J P8Psds 

having finite trace (cf. /12/). 

Two remarks seem to be necessary: One can extend z. on a larger 

space (of generalized functions) where it induces a ff-additive 

measure and {zA becomes a function-valued process. For example 
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one can choose the Sobolev space H * , i.e. the completion of H 
with respect to the weaker norm 

11-11 H = llB-1(.)llH , B = -J-DUW)' 
If one takes the eigenfunctions {eA TL* of B as the basis in H 
(normalized on H) then an orthonormal basis in H - is given by 
(5î  i=1 ' gi = e i ^ i * where *\± = L/iTrfS' , i=1,...,*> , are 
the corresponding eigenvalues of B. Then we have 

QQ CO 

Z-i. = I 'X^b. ( t ) - e . , I ^ . <oo , 
x i=1 x * x i-1 1 

and ^z.} . = 1 i s an H - -valued Wiener E.T22l2§i5 w--"kn covariance 
operator " " J=£" 

Cov(z.,z.f) = £ A. e. o e. 
z * 1 = 1 ^ 1 

belonging to trace class. Because H is dense and continuous in H_1 
F. can be extended to a linear bounded operator from H - to H. Now, 
because F.e £(H ,H) , the definition of a stochastic integral 
with respect to a Hilbert space-valued Wiener process /6/,/1/,/2/ 
can be applied and gives the same result (6). 
The other remark shall state that the most general approach uses, 
stochastic integrals with respect to a Wiener process with values 
in a Banach space which is given on an abstract Wiener space 
(i,H,J5). These integrals are defined for integrands 
F * t(T; t,2)(3>'K)) » K another Hilbert space, using an approximation 
of F by simple functions /9/,/5/. If ̂  is a Hilbert space itself 
(and K=H) then this definition is equivalent to (6). (The same re
sult holds for random integrands, see /8/.) 
Within the function-valued process approach we define: The (mild) 
solution of equation (1) shall be 

ut(.) = V o + ClXsdzs . (7) 

where l^M t>0 "*"s ̂ ne semigrouP generated by A = D(d /dx ), i.e. 
Lf (Tth)(x) = jG(t,x,y)h(y)dy . 

It turns out that u.(0 has a.s. continuous sample paths /12/,/1/. 

4* Connection of both approaches and properties of jbhe solutions 

The most important results are the following ones /&/: 

(i) The approaches discussed in 2. and 3» are essentially the same 
(although introduced independently in the literature) because 
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[0,t]«JG(t"S'"y)dV ^ ^Tt-BdZS 
have the same distribution (on a suitable function space). If we 
choose (£-,?,P) = (C (frxfl ),j8p fPw) , C being the continuous func-

o 
tions vanishing on the axes and Pw being the Wiener measure (ob
tained f.e. by restriction of Prw 7on C ) we can put 

twtxl o 
zt(x>"> - h Wtx ( w ) < a n d *tx< w ) " ^ Wtx<"> > 

in the sense of generalized functions (i.e. the noise z. is only 
spatially "white"), but the support of z. is the smaller space 
H_.j (2>) c Df(5)). In this case we even have 

r , jG(tf.fy)dW == K - s ^ s P"a-S-
[0,t]xXJ sy

 QJ t s s 

on H and, consequently, u./\ = u.(0 P-a.s. for the solutions (5) 
and (7), which justifies the notation. To prove this one has to use 

r ,oJe ( s ) h ( x ) d W s x « fg<s)dW 

for get (r) 9 h«r(2)) , |h| = 1 , and {wj g>Q being a standard 

Wiener process /15/. * 

(ii) The solution {u. }, (t,x)eC*3b is a Gaussian random field 
with Lr 

E u tx = j G ( t » x » y ) u
0 ( y ) d y » 

? t A t V L r 

C o v ( u t x , u t l x f ) = c • J J G ( t - s , x , y ) G ( t , - s , x , , y ) d y d s 

and P-a.s. continuous paths. Equivalently, the solution ^u. (0}» 
t fcT , is an H-valued process (which actually can be considered on 
C(2>) ) with Eu. = T.u and covariance operator 

t tf 
Cov(ut,ut.) = c2 . * /T t_ sT t,_ sds 

and has P-a.s. continuous paths. 

(iii) Up to here the initial value was fixed. Now shall be u (0 an 

H-valued random variable, but independent of the noise lzt̂ ')][ tcfo «)* 
Let us dec 
able with 
Let us decompose u = (u - v) + v , where v is a Gaussian vari 

Ev =- 0 , Cov(v) a - ̂ -•A"1 , A = D(d2/dx2) 

tr 
Then lim T.(u -v) = 0 P-a.s., and T.v + c- T. dz is a sta-tv Q ' t QJ t-s s 

tionary process (in t), i.e. {utit*0 is asvinP topically stationary. 
The first part follows from the property of T^ to smear out any 
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(finite) initial condition, the second part is a consequence of the 
fact that v is chosen to have the distribution of tr 

lim JTt-sdzs • t-.>oo 0J t s s 

5» Markov property 

The solution \u+(')} * t > 0, is a homogeneous Markov process (see 
/12/) with a transition probability 

Q t_ g (h,M ) x- P { u t e M| u s = h ] , 0 - < s i t , 

which is given by the distribution of 

Tt- S
h + c' s|

Tt-rdzr ' 

The unique invariant measure /*G is a centered Gaussian with the co-
variance (-c /2)-A~ . The essential reason is that u and (z \, 

s r • 

s -S r-5 t , are independent and u. is fully determined by these 
values, tf 

ut = Ttus + c* 3J
Tt-rdzr • 

The following comment should be given: Within the two-parameter 
field approach several mathematical definitions of a Markov-like 
property are possible /14/,/3/»/l6/,/13/» but they all have no 
direct physical interpretation. For function-valued processes with 
one (time) parameter, however, the Markov property is defined ma
thematically as usually and reflects the causality principle in 
physics. The price for this advantage (to apply the powerful tech
niques developed in Markov process theory) is to work in function 
spaces and to do some hard functional analysis. 

6. Nonlinear Equation 

Let us shortly consider the nonlinear case where in (1) f(u) $ 0 . 
Generalizing (7) we define that the mild solution of (1) shall ful
fill the integral equation 

ut - Ttuo + J T t - s f ( u s ) d s + c' 0K-s
d zs • (8) 

If f fulfills a certain Lipschitz condition then the solution of 
(8) exists uniquely and is a homogeneous Markov process with P-a.s. 
continuous sample paths. This result has been proven in /1/ for a 
Hilbert space-valued Wiener process (but more general integrands) 
and can be extended to our case of a Wiener cylindrical process z. 
In the case that f is monotone (in some sense) (f.e. a polynomial 
function with negative derivative) the invariant measure ju. can be 
given explicitly /11/: It is absolutely continuous with respect to 
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the invariant measure ,MG of the linear problem, /*. « yu , and has 

the (unnormalized) Radon-Nikodym derivative 

(^)(u) = const • exp/^.L[v(u(x))cbcj , - ^ 1 = f(u) . 

The proof uses a sequence of approximations of u, given by the pro

jection onto subspaces of H spanned by the first n eigenvectors of 

A = D(d2/dx2) . 

7» Final remarks 

2 2 Obviously similar results are valid if the operator D(d /dx ) is 

replaced by an arbitrary negative operator A when A~ is of Hilbert-

Schmidt type. 

Also the second result of 6. is expected to be true if f is non-

monotone (f.e. an arbitrary polynomial function). 

Moreover the results are easily extended to the case where the 

strength of the noise c = c ( t ) is a given time-dependent function. 

The essential generalization will be the case of state-dependent 

strength of the noise c = c(u) , or eqivalently, the equation 

?u/3t = D-(?2u/9x2) + f(u) + cg(u).5(tfx) 

This needs a more refined definition of stochastic integrals (for 

example of Ito or Stratonovich type), because the integrands become 

random functions, and the chose of the "right" definition is a 

question of modelling. 

REFERENCES 

h i ARNOLD,L.,R.F.CURTAIN, P.KOTELENEZ,"Nonlinear stochastic evolu

tion equations in Hilbert space", Universitat Bremen, Report 

Nr. 17 (1980) 

/2/ ARNOLD,L.,R.F.CURTAIN,P.KOTELENEZ, "Linear stochastic evolution 

equation models for chemical reactions", In: Stochastic Nonli

near Systems in Physics, Chemistry and Biology, ed. by L.ARNOLD 

and R.LEFEVER, Springer Series in Synergetics, vol.8, Berlin-

Heidelberg-New York 1981 

/3/ CAIR0LI,R.,J.B.WALSH, "Stochastic integrals in the plane", Acta 

Math. 124 (1975), 111-181 

/4/ CHENTSOV,N.N., "Wiener random fields depending on several para

meters", Dokl.Akad.Nauk SSSR 106 (1956), 607-609 (in Russian) 



STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS 169 

/5/ CHOW,P.-L., "Stochastic Partial Differential Equations in Tur

bulence Related Problems", In: Probabilistic Analysis and Re

lated Topics, vol.1, ed. by A.BHARUCHA-REID, New York 1978, 

1-43 

161 CURTAIN,R.P., "Stochastic Differential Equations with General 

White Noise Disturbance", J.Math.Anal.Appl. 60 (1977), 570-595 

111 HAKEN,H., Synergetics.An Introduction, Springer Series in Syn

ergetics, vol.1, Berlin-Heidelberg-New York 1978 

IB/ JETSCHKE,G., "On the equivalence of different approaches and 

results to stochastic partial differential equations", preprint 

Universitat Jena (1982) 

/9/ KU0,H.H., "Gaussian Measures in Banach Spaces", Lecture Notes 

in Mathematics, vol.463, Berlin-Heidelberg-New York 1975 

/10/ MANTHEY,R., "tlber die Lbsung und eine Approximation der homo-

genen Warmeleitungsgleichung mit zweiparametrigem weifiem GauB-

schen Rauschen", preprint Universitat Jena (1982) 

/11/ MARCUS,R., "Parabolic Ito Equations with Monotone Nonlinear!-

ties", J.Punct.Anal. 2£ (1978), 275-286 

/12/ MIYAHARA,Y., "Infinite Dimensional Langevin Equation and Pokker 

Planck Equation", Nagoya Math.J. 81 (1981), 177-223 

/13/ NUALART,D.,M.SANZ, "A Markov Property for Two Parameter 

Gaussian Processes", Stochastica 2 (1979), 1-15 

/14/ R0ZAN0V,Y.A.f "Markovian Random Fields", Moscow 1981 (in Russ.) 

/15/ WALSH,J.B., "A Stochastic Model of Neural Response", Adv. 

Appl.Prob. 23 (1981), 231-281 

/16/ WONG,E.,M.ZAKAI, "Martingales and Stochastic Integrals for 

Processes with a Multidimensional Time Parameter", Z.Wahrsch. 

u.v.G. 29 (1974), 109-122 

/17/ YEH,J., "Wiener Measure in a Space of Functions of Two Vari

ables", Trans.Amer.Math. Soc. 21 0960), 433-450 

G.Jetschke, Sektion Mathematik der Friedrich-Schiller-Universität, 

DDR-6900 Jena, Universitätshochhaus 


