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SELECTED TOPICS OP MATROID THEORY AND ITS APPLICATIONS 

Laszld LOVASZ - Andras RECSKI 

1/ Some "classical" algorithms 

2/ Matroid oracles 

3/ Submodular functions 

4/ Some further results 

5/ On the engineering applications of matroids 

The present paper summarizes some results in matroid theory* 

The authors have chosen the topics in a subjective way, nevertheless, 

the algorithmic aspects dominate throughout. Basic concepts and results 

of matroid theory are supposed; Chapters 1 and 4 of [Welsh] are suffi­

cient for most parts of the paper# 

1/ Some "classical" algorithms 

The classical algorithms of CBoruvka] and p-^uskal] to find a spanning 

forest of maximal weight in a graph can be generalized as follows: 

CJ 

Input: (S,xlV) is a matroid. where S is the underlying set, M £ 2 is 

the collection of independent subsets* w:S —*-lR is a weight function, which 

associates nonnegative real weight w(s) to every s£ S# 

Output: A base B --- S of the matroid, with maximum weight w(B) = 

=2. |w(x) , x 6 B J among all the possible bases. 

Description: Start from the empty set, i#e# let B = 0# In every step put 

B «= B U {x } where x has maximal weight among those elements x for which 

BU lx^e/i# If no such x exists, stop. 

The algorithm is called greedy since it increases the weight of the in­

dependent set with the maximal possible amount in every step# 

Theorem 1 CRado] The greedy algorithm gives a maximum weight base for 
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every matroid and for an arbitrary weight-function* On the other hand, if 

Ma2 does not satisfy the exchange axiom of matroid theory, one can always 

find a weight-function w^ so that the greedy algorithm gives a wrong answer 

(i#e# a subset whose weight is not maximum)* 

Sketch of proof: a/ Suppose that the greedy algorithm gives 

B = jx., x2, ###, x } where the elements were given in this order, and 

suppose there were a base B with w(B ) > w(B)# If there were several 

bases with maximum weight, choose one with J B H B | maximal# Let x be 

the maximum weight element of B - B and consider B U (x J# This contains 

a unique circuit C# Let x. be an element of C-{x; with maximal subscript* 

Since (BUlxl) - {x.} is a base, w(x) > w(xi) would contradict the choice 

of x. during the greedy algorithm, while w(x.) ̂  w(x) would contradict 

the choice of B since (B - [x])U ix.3 is also a base# 

b/ IfM violates the exchange axiom, there are subsets X,Y so that 

X ±M , Y£ M , |X | > I YI yet Y U { x ] 4 M f or every x € X# Let us define a 

weight function w so that w(y) = 1 for y G Y, w(x) = 1 - £ for 

x 6 X - Y and w(z) = 0 for z ̂  X U Y# Then the greedy algorithm leads to 

Y (plus perhaps some elements from S - (X U Y)) which is certainly not of 

maximum weight if z< 1 - ( | Y I / ( X | J # 

Another basic tool of matroid theory is the matroid partition algorithm 

[Edmonds 1] # First we present an essentially equivalent alternative, the 

matroid intersection algorithm. 

Input: (S,»Af1) and (S,I/Y2) are two matroids on the same underlying set. 

Output: A subset X ? S with maximum cardinality satisfying X Cs/^J^lM 2 # 

Description: Start with X =- 0# In every step define a directed graph G with 

vertex set S as follows* For every x 4- X and l U J x j f A draw an edge 

(x, y) if y belongs to the unique circuit of vAf f contained in x U { x } # 

Furthermore, for every x ^ X and X U ^x}f-i.AL draw an edge (y, x) 

if y belongs to the unique circuit of iAL contained in X U {x] # 

If G has no sink (i#e# no vertex with outdegree zero) then X is a 

base of M-, and we can stop. If G has no source (i#e# no vertex with in-

degree zero) then X is a base of J7p and we can stop# Similarly, we can 

stop if there is no directed path in G from a source to a sink: then X 

is of maximum cardinality in J^LCiJ^-j* 

If there are source-to-sink directed paths in G, consider a minimal one 

(v., v2, ###, v ), i#e# one with no shortcuts. Observe that if t = 1, i#e# 

when v, £ S - X is isolated in G (which is certainly a minimal source-sink 

path) then X U Iv,} £ >M 0 M #The source v., is certainly not in X and in 
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general v. € x if and only if i is even# In particular, the sink v. is 

not in X and t is odd# Then (X -{v 2, v . , v^, ###])(j{v1, v«, v-, # # # } 

is taken for X and start the procedure from the beginning, with a new graph# 

Theorem_2 [Krogdahl, Lawler] This algorithm always solves the matroid 

intersection problem* 

We do not give detailed proof here* The minimality of the source-sink 

path should be applied and induction is used on the length of such a (so 

called augmenting) path# On the other hand observe that if V . C S is the 

set of those vertices which can be reached via a directed path form a source 

then -̂ (V.,) = 1 ^ 0 x| and r2(S - V.,) =- |x - V-jl Hence, when the algorithm 

stops, we have a subset X£ J/l-.C\M- with cardinality ri(vn) + ro( s " V T ) 

which proves the non-trivial part of the following theorem: 

Theorem^ [Edmonds 1] max£(Bj; BC^HSt^ - min{p1(V) + r2(S - V); 

VC s}# 

Once we have these results, a number of equivalent statements can easily 

be obtained* 

Theorem 4 [Edmonds 1] The union (S,»//- ) V (S,</?0) of two matroids 
25 SS 8 SS SS S3 SS SS SS -»»-»•>••----•-» J^ £ 

(S,/?,) and (S,»A7p) on the same set S equals the free matroid, i#e# S 

can be partitioned into S.. U S so that S..C «̂ - and S^'-^, if and 

only if r^X) + r2(X) > \x\ for every X 9 S# 

Proof; The "only if" part is trivial. If the condition holds, i#e# if 

minJr1(X) + r0(X) - [x| ; X S S^ > 0 then minjr^X) + r*(S - X); X 9 S ) ^ 

2. r2(s), by the well known rank function formula r*(S - X) = |s - x| + 

+ r (X) - r2(S) for dual matroids# This latter minimum is 

max{|B|; B Ci/ty-fli/'Z* J by the previous theorem, and is therefore obviously 

at most r*(S)# The equality means that the maximum is attained at such a 

B^ which is a base of -/**„ Then B e M and S - B € ft 
O — — d O ± 0 2 

SS22--!I2«.1 [Nash-Williams] Let (f : S-->T and for a matroid (S,./Y), let 

/*/-!<?(*); A€A}0 Then (if(S),iA^) is a matroid with rank function 

r^(X) = min{p(<p"1(Y)) + |x - Y| ; Y <-- x } # 

Sketch of proof; Consider the partition (] ^ on S defined by tf , i#e# 

s..̂  and s are in the same subset of fly if and only if <f (s1) ==<^(s2)# 

Define a partition matroid (St\r) so that a subset of S is independent 
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InP if and only if it intersects any subset of //L in at most one element. 

Then the independent subsets of KM^ are just those corresponding to the 

common independent subsets of \M and fi . Since the rank of such a subset W 

in the matroid !P is just |̂  (w)| , the nontrivial part of the statement 

follows from Theorem 3. 

Theorem_6 [Nash-Williams] The rank function R of the union of the 

matroids (S,^. ), i = 1, 2, ..., k is R(X) =- minfsr»(Y) + |x - YJ; YSx}. 
1 i=l X 

Proof; Let Jtf be the direct sum of the matroids (S,i/V ), constructed 

on k disjoint copies of S, and let <f be the natural homomorphism, identi­

fying the k copies of each element of S. Apply Theorem 5. 

2/ Matroid oracles 

Both of the algorithms in Section 1 are usually very effective if imple­

mented for various practical purpose*, If, for example, the input matroids 

are graphic and are actually represented by graphs then the number of steps 

for these algorithms is a polynomial of the number of vertices of the graphs. 

Similarly, if the matroids are represented by matrices (as column space mat­

roids), the complexity of the algorithms is again a polynomial function of 

the size of the input. But how is a matroid stored "in general"? 

Since the number of different matroids on an n-element set is almost 
2n 

2 , any "general" description would require exponentially large storage 

space. Hence, instead of the usual requirement of "being polynomial in the 

size of the input" we would prefer being polynomial in n. A usual way to 

formalize this is to assume that our matroid is described by an oracle (sub­

routine) which somehow can tell us whether a given subset is independent or 

not. (We are not interested in how.this oracle is realized by a program.) 

Then a lower bound on efficiency can be obtained from the number of questions 

posed to this oracle. (Roughly speaking, the calls of a certain subroutine 

are counted as single steps, no matter how complex the interior structure of 

the subroutine may be.) 

This oracle is called an independence-oracle. Some other, more or less 

usual oracles are the following. 
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Name Input Output 

Base-oracle a subset X "yes" if X is a base and "no" otherwis 

Circuit-oracle a subset X "yes" if X is a circuit and "no" otherwise 

Rank-oracle a subs t X the rank r(x) of X 

Girth-oracle a subset X the length of the shortest circuit contained 

in X (and, say, oo if X is independent) 

Unlike in case of graphs, where the various storages (incidence matrix, 

adjacency matrix, adjacency lists etc) are in a sense equivalent (no matter 

which one is used, the complexity of a certain algorithm is either always 

polynomial - the exponent may vary, of course - or never polynomial), in case 

of matroids the complexity highly depends on the actual oracle. The interested 

reader is referred to [Hausmann-Korte] for a detailed analysis. In what fol­

lows only some typical results are presented. 

TheorenV7 The rank-oracle and the independence-oracle are polynomially 

equivalent. 

0.. , it can be used to build an inde-Proof: If one has a rank-oracle 

pendence-oracle 

puts 

is "no". 

On the other hand, r(x) can be determined applying 0? only, since 

this is exactly what the greedy algorithm does, with a constant weight func 

tion. 

Op as follows: If X is the input of 0 , one simply in-

X to 0,; if the output r(X) of 0.. equals [x| then one outputs 

"yes" for 0 , while if r(x) < |x| then the output for 02 

Theorem_8 The base-oracle and the circuit-oracle are less powerful then 

the independence oracle. 

Proof: Let (S,,/? ) be defined on an |s| = 2n -element set so that the 

only bAse of .A?-, is a certain n-element subset X c s. Any algorithm, using 
k 

the base-oracle only in 0(n ) times, might get a "no" answer for every 

question. Since the number of n-element subsets of S grows exponentially, 

several n-element subsets were not asked at all, and we cannot deduce which 

one of them is the base. Thus even the independence of the singletons cannot 

be determined. For a similar proof of the "weakness" of the circuit-oracle 

apply (S,/4 ) where the above set X is the only circuit. On the other 

hand, the independence oracle is at least as powerful as these latter two, 

as can be proved in a straightforward way. 

However, the reader should verify that the base- and the independence-

oracles are polynomially equivalent if one knows one base in advance. 
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Theorem__9 The girth-oracle is more powerful than the other four oracles. 

Proof: It is enough to prove that the girth-oracle cannot be realized 

using the independence-oracle a polynomial number of times only* Define 

(S,«/*£.) and ( S , / 7 . ) on the same set as above ( |s | = 2n) and let every 

subset of cardinality n be a base in ./?« and all except one be bases in 

J\„ Of course, the girth of vAc. is n+1 while that of ,/?. is n. But one 

cannot tell the difference using the independence-oracle, unless asking the 

independence of all the n-element subsets of S. 

3/ Submodular functions 

A function b : 2 -» IR is submodular if, for any pair X, Y of sub­

sets of S, the relation b(x) + b(Y) >, b(X U Y) +t>(X D Y) holds. If the 

relation always holds with equality, the function is modular. The sum of two 

submodular functions (or that of a submodular and a modular function) is sub-

modular again. The rank function of a malroid is a special submodular func­

tion. 

•?_-§2£f!?L.!:2 CGrotschel, Lovasz, Schijver] Suppose that a submodular 

function b is given by an oracle, which gives b(x) for every X _ S. 

Then b can be minimized on the underlying set by a polynomial algorithm. 

The proof applies the celebrated ellipsoid method [Khachiyan], [Shor] 

and is therefore of a significantly different character. However, some 

special cases have "traditional" solution (without real arithmetic with 

approximative results etc), e.g. if the submodular function is r^Vj+r^S-V) 

or C_Sr-(v)3 - |v|f where r. are rank functions of matroids (see Theorems 
i-1 1 1 

3 and 6 respectively). Similarly, the max-flow-min-cut theorem of Ford and 

Fulkerson can be considered as such a special case. 
Q 

If a non-negative submodular function b : 2 -* (R is integer-valued, 

with b(0) = 0, then the only reason why b is not the rank function of a 

matroid can be that there are subsets X £ S with b(x)> (x|. This 

emphasizes the usefulness of the following theorem. 

Theorem 11 [Edmonds 33 Those subsets Y Q S for which 

min\b(X) - |x|; X Q Yj ̂  0, form the independent subsets of a matroid. 
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If b happens to be the rank function of a matroid then this "new" 

matroid is just the original one# The reader should verify by Theorem 4 that 

if b is the sum of the rank functions of some matroids \K f « / l , ### then 

this "new" matroid is just their union v^-V*A?PV ... . 
S We close this section with a more recent result. A function p : 2 -» JR 

is called supermodular if -p is submodular. 

Theorem 12 [Frank] Let p and b be supermodular and submodular func-

tions, respectively, both integer valued, on the same set S# Let p ^ b 

hold for every subset of S# Then there always exists an integer valued 

modular function m so that p £ m £ b# 

As an application let us deduce Theorem 3 from Theorem 12# Suppose that 

k = minlr^X) + r2(S - X); X £ s] and we have to show that tA-fl J^ 

contains a k-element subset. We may assume that r.(S) = r2(s) = k by 

truncating \M-> and M~ if necessary. By the definition of k we have 

k - r2(S - X) ̂  r^X) f o r ©very X ^ S# Since k - r2(S - X) is super-

modular and r_(x) is submodular, there exists a modular function m(x) 

between them. Since m(\xj) =- 0 or 1 for every x £ S, it is very easy to 

show that the set B ={x; m(|x]) -. 1) is just the requested k-element sub-

set# 

4/ Some further results 

Let ( S f j ^ ) be a matroid and \a-f b.} f {a2, b A, ### be disjoint 

pairs from the elements of S# Find a maximal number of such pairs {a. , b.^ 

so that their union be independent in (S,H) 9 This is the matroid parity or 

matroid matching problem. The corresponding problem for disjoint n-tuples 

(n ^ 3) is known to be NP-hard, while several advanced results of the class 

P are shown (e#g# [Lawlerj) to be special cases of this problem, e#g# 

finding a maximal matching in a (not necessarily bipartite) graph, or the 

whole first section of the present paper# 
The matroid parity problem is of exponential complexity £Jensen-KorteJ, 

[Lovasz 2] but a very important special case is polynomially solvable [Lo­

vasz 1] f namely when v.Af is linear, i.e# represented over the field of the 

reals. In this case the above pairs can be imagined as a set H of lines in 

the real projective space fP and one should find k lines so that their 

union spans a sub space of dimension 2k# Their maximal number *v can be 

expressed by the following formula: 
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k r(H± + A) - r(A) -, 
T.heorem^l.3 [Lovasz 1,2] V = min <r(A) + Z. L ? * i where 

A ranges over all flats of P and {H.,, Hp, ###, H,} over all partitions of 

H# 

Example: Consider the set H -- ̂  e,f e2, e«} of lines where e., = {l, 2 J, 

Q S ^3, 4j and e« = \ 5f 6 J in the matroid yH, shown by its affine represen­

tation on Pig# 1# Since the rank of >A? is four, one cannot find more than 

two lines with the required properties but one set {e,, e. j of two lines 

will be appropriate* Hence v -» 2 and the above minimum can really be 

attained by A = ̂ 3] and by almost any partition of H# 

Another important result in the past few years was a new characteriza­

tion of regular matroids [Seymour 1] # We recollect that [Tutte] has already 

given an excluded minor type characterization of them# This imples that non-

regularity is an NP-property, i#e# one could prove (in polynomial time) that 

the matroid is not regular, provided he/she has already found a forbidden 

minor (after a no matter how long search)* But a proof of regularity (in 

polynomial time) was an open problem* 

Let us refer to direct sum as 1-sum and introduce the concepts of 2-

and 3-sums# These are amalgamations of two matroids along a common element 

and along a common circuit of length 3t respectively* Instead of formal 

definitions we offer the intuitive drawings (Fig# 2) for graphic matroids. 

These operations preserve regularity. 

2&.§2r®5^1i [Seymour 1] Any regular matroid can be obtained by 1-, 2-
and 3-sums from graphic matroids, cographic matroids, and from several copies 

of a further regular matroid R, which can be described in the simplest way 

by the following binary representation: 

1 1 1 1 1 1 0 0 0 0 

1 1 1 0 0 0 1 1 1 0 

1 0 0 1 1 0 1 1 0 1 

0 1 0 1 0 1 1 0 1 1 

0 0 1 0 1 1 0 1 1 1 

Before finishing the pure mathematical part of the paper, it might be 

instructive to recollect some famous problems of matroid theory from the 

point of view of computational complexity* 
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Polynomially solvable problems 

Base of maximal weight in a matroid (Theorem 1) 

Subset of maximal cardinality, simultaneously independent in two matroids 

(Theorem 3) 

Subset of maximal weight, simultaneously independent in two matroids 

[Edmonds 5]» [Lawler] 

Rank of a subset in the union of matroids (Theorem 6) 

Minimum of an arbitrary submodular function (Theorem 10) 

The matroid parity problem for linearly represented matroids [Lovasz 1] 

Test of graphicity of a matroid [Seymour 2] 

Test of regularity of a matroid [Seymour 1]  

Non-polynomial problems 

Length of a shortest circuit of the matroid (Theorem 9) 

Length of a longest circuit of the matroid 

Maximum of an arbitrary submodular function 

The matroid matching problem for arbitrary matroids [Jensen-Korte], [Lovasz 2] 

Test of binarity of a matroid [Seymour 2] 

Test of linearity of a matroid  

NP-hard problems 

Find a maximal cardinality subset, which is simultaneously independent in 

more than two graphic matroids 

Generalize the matroid matching problem (with n-tuples, n ̂  3)» but 

restricted for linearly represented matroids (or even to graphic 

matroids) 

Find the length of a shortest/longest circuit of a lineary represented matroic 

5/ On the engineering applications of matroids 

Since finiteness and linearity are perhaps the most usual assumptions 

when modelling physical phenomena, matroids can certainly be very well applied 

to decide qualitative problems in science, engineering, operations research 

etc. Examples for such problems are 

a/ Decide whether a linear electric network is uniquely solvable, 

b/ Decide whether a framework (constructed from rods and joints) is rigid, 

c/ Decide whether a 2-dimensional drawing correctly represents a polyhedron. 
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All these problem could theoretically be solved by classical methods of linear 

algebra but roufki-off errors in arithmetic operations among real numbers 

(which are represented by decimals of a finite length in a computer) can cause 

qualitative mistakes, especially in case of large systems* 

Let us associate a matroid (simply the column space matroid of a matrix) 

to the objects under consideration* E
#
g

#
 if an electric device is modelled as 

a multiport » say an ideal transformer (Fig
#
 3a) by the system of equations 

-, U l - -1 

1 k 0 0" U 2 0 

0 0 k 1. 4 
rs 

. 0 . 

or if a framework is described by the usual rigidity conditions, e
#
g

#
 the 

four-rods planar framework (Fig
#
 3c) by the system 
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Л. then the circuit matroid of the graph of Fig. 3b represents the matroidal 

model of the above 2-port and the affine representation on Fig
#
 3d visualizes 

the matroidal model of the above framework* 

Now, the answer to some simple questions can directly be obtained from 

these matroidal models. E
#
g

#
 if one terminates the first port of the trans­

former by a voltage source and the second port by a current source (Fig
#
 4a) 

then the network is uniquely solvable (the other voltages and currents can 

uniquely be expressed by them) while the network is singular if both ports 

are terminated by voltage sources (Fig* 4 b )
#
 These answers can also be obtained 

by checking that the set ji-,i
 u

2
)

 i s
 independent while {i.,i

2
} is 

dependent in the matroid of the transformer (cf
#
 Fig

#
 3 b )

#
 Similarly, if we 

pin down the first and the third joints of the planar framework of Fig
#
3c 

then the whole system becomes rigid, which is certainly not the case if the 

first and second joints are pinned down (see Figs
#
 4c

#
 and 4d respectively)• 

These answers can also be obtained by checking that the set {-^tX/t^pty*} 

is independent while {* - \ ' * - A * ^ - X ^ A S i s
 dependent in the matroid of the 

framework (cf
#
 Fig

#
 3 d )

# 

However, if one wishes to answer some more complicated qualitative prob-
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lerns, some of the advanced matroidal results of the previous sections are re-
Kas, 

quired* For example, an n-port a hybrid immittance description if its ports 

can be terminated by voltage and current sources to ensure unique solvability. 

2&®2£§?Ll5 CM.-Tomizawa] An n-port has (at least one) hybrid immittance 

description if and only if its matroid has a common base with the partition 

matroid S , defined so that X C £u.., u^, ###f u . L, L, 9#(f i } is a 

base of *2> if and only if )x 0 *u., i.}| = 1 for every j = lf 2f ###f n# 

Theorem 16 CLaman] If a planar framework with n joints and e = 2n - 3 

rods is rigid then e* .£ 2n* - 3 for every "subgraph" of the framework with 

nf joints and ef rods# This condition is also sufficient for rigidity if 

the framework is generic» i#e# if its joints are in general position# 

Theorem 17 CLovasz-Yeraini] Generic rigidity of the planar framework 

with graph G is equivalent to the condition that iAL(G) V A ? (G) is the free 

matroid for every e € E(G), where iA7 (G) is the circuit matroid of the graph, 

obtained from G by doubling the edge e# 

Theorem_18 CRosenberg]f CRecski 3], CWhite-Whiteley] The subdeterminants 

of the describing matrix of the frameworks can be expressed as sums over the 

possible decompositions of the graph of the framework into two trees# 

This result is analogous to the so called topological formulae of linear 

active networks. In case of certain frameworks (the so called simple trusses 

CTiraoshenko and Young]f see e#g# the frameworks on Fig# 5) an electric network 

model can directly be established CRecski 3]• 

Theorem_19 CRecski 2, 3] If some genericity-type condition is 

prescribed, the matroidal model of the interconnection of several multiports 

or several frameworks can be obtained from the matroids of the original 

objects by the union of the matroids# 

The basic tool in these investigations is a result of CEdmonds 2] # 

Essentially in the same way, matroid partition algorithms can be used 

for checking the solvability of complex interconnected electric networks 

CIri-Tomizawa], CRecski 1], CP©tersen]# 

Theorem 20 CLovasz 1] The minimal number of pins required to fix a frame­

work to the plane can be obtained by the matroid matching algorithm. 
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Finally we present a somewhat less recent (!) result which relates prob­

lem c/ (see the beginning of this section) to the rigidity problem* 

?k®2£!§5_?l CMa-xwel-L] A framework with n joints and e = 2n - 3 rods is 

rigid in the plane if and only if it does not contain the projection of a 3-

dimensional polyhedron. 

For example, it is intuitively clear that only the first framework on 

Pig# 6 is rigid* Por further results related to problem c/ the reader is re­

ferred to CSugihara]# 
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