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SELECTED TOPICS OF MATROID THEORY AND ITS APPLICATIONS

L&sz1é LOVASZ - Andrds RECSKI

1/ Some "classical" algorithms

2/ lMatroid oracles

3/ Submodular functions

4/  Some further results

5/ On the engineering applications of matroids

The present paper summarizes some results in matroid theory.
The authors have chosen the topics in a subjective way, nevertheless,
the algorithmic aspects dominate throughout, Basic concepts and results
of matroid theory are supposed; Chapters 1 and 4 of [Welsh] are suffi-
cient for most parts of the paper.,

1/ Some '"classical" algorithms

The classical algorithms of [Boruvka] and [Kruskal] to find a spanning

forest of maximal weight in a graph can be generalized as follows:

Input: (S,M) is a matroid, where S is the underlying set, M< 25 is

the collection of independent subsets, w:S-—’R; is a weight function, which
associates nonnegative real weight w(s) to every s€ S.

Output: A base B S S of the matroid, with maximum weight w(B) =

=2 {w(x), xGB} among all the possible bases.

Description: Start from the empty set, i,e. let ‘B = p. In every step put
B=BU {xo} where x, has maximal weight among those elements x for which
BU {xYeM, If no such =x exists, stop.

The algorithm is called greedy since it increases the weight of the in-
dependent set with the maximal possible amount in every step.

Zl;ggzgxg-l [Rado] The greedy algorithm gives a maximum weight base for
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every matroid and for an arbitrary weight-function, On the other hand, if
Mc ZS does not satisfy the exchange axiom of matroid- theory, one can always
find a weight-function W, 80 that the greedy algorithm gives a wrong answer

(i.e. a subset whose weight is not maximum),

Sketch of proof: a/ Suppose that the greedy algorithm gives
B = {xl, Xy eeey xk} where the elements were given in this order, and
suppose there were a base B with w(Bo) > w(B). If there were several
bases with maximum weight, choose one with ,Bn Bol maximal, Let x be
the maximum weight element of‘i Bo - B and consider B U {x}. This contains
a unique circuit C, Let X, be an element of C—{x} with maximal subscript.
Since (BU {x}) - {x;] is a base, w(x) > w(xi) would contradict the choice
of x; during the greedy algorithm, while w(xi) 2 w(x) would contradict
the choice of B since (Bo - ix})u ‘txi} is also a base,

b/ If M violates the exchange axiom, there are subsets X,Y so that
xeM, YeM, x| > |yl yet YU {x]¢M for every x € X, Let us define a
weight function w so that w(y) =1 for y €Y, w(x) =1 -¢ for
x€X-Y and w(z) =0 for z ¢ X UY, Then the greedy algorithm leads to
Y (plus perhaps some elements from S - (X U Y)) which is certainly not of
maximum weight if =< 1 - (l¥l / (x1).

Another basic tool of matroid theory is the matroid partition algorithm
[Edmonds 1], Tirst we present an essentially equivalent alternative, the
matroid intersection algorithm,

Input: (S,Ml) and (S,.Mz) are two matroids on the same underlying set.
Output: A subset X € S with maximum cardinality satisfying X €M NM,.
Description: Start with X = f, In every step define a directed graph G with
vertex set S as follows, For every x ¢ X and XUix}¢~Ml draw an edge
(x, y) if y belongs to the unique circuit of Ml’ contained in X U{x}.
Furthermore, for every x 4 X and XU {x}¢M2 draw an edge (¥, x)

if y Dbelongs to the unique circuit of ‘MZ contained in XU {x}.

If G has no sink (i.e. no vertex with outdegree zero) then X is a
base of ‘Ml and we can stop, If G has no source (i.e., no vertex with in-
degree zero) then X is a base of J‘72 and we can stop, Similarly, we can
stop if there is no directed path in G from a source to a sink: then X
is of maximum cardinality in /4L NM,.

If there are source-to-sink directed paths in G, consider a minimal one
(vl, Vs eees vt), i.e, one with no shortcuts, Observe that if t = 1, i.e.
when le S -« X is isolated in G (which is certainly a minimal source-sink

path) then X U {vl}e Mlﬂ Mz.’l‘he source v., 1s certainly not in X and in

1
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general v, € X if and only if i is even. In particular, the sink vy is
pot in X and t 1s odd, Then (X = {vz, V4 Voo ...})U{vl, V3s Vo veo}

is taken for X and start the procedure from the beginning, with a new graph.

Thgorg@_ﬁ [Krogdahl, Lawler] This algorithm always solves the matroid

intersection problem,

We do not give detailed proof here, The minimality of the source-sink
path should be applied and induction is used on the length of such a (so
called augmenting) path, On the other hand observe that if V, <& S is the
set of those vertices which can be reached via a directed path form a source
then rl(Vl) = |V1ﬂ x| and r2(s - Vl) = |x - VlL Hence, when the algorithm
stops, we have a subset Xeﬂlﬂﬂz with cardinality r,(V;) + ry(S - Vv;)

which proves the non-trivial part of the following theorem:

Theorem_ 3 [Edmonds 1] ma.x{lBl; Béﬂlﬂﬂz} = min{rl(V) + rz(s -7);
v sl

Once we have these results, a number of equivalent statements can easily
be obtained,

Theorem 4 [Edmonds 1] The union (S,./‘!l) \'4 (S,./‘?z) of two matroids
(S,./"!l) and (S,.Ma) on the same set S equals the free matroid, i.e, S
can be partitioned into S, U S, so that S€ M, and 5,€M,, if and
only if r;(X) + ry(X) Z |x\ for every X S5,

Proof: The "only if" part is trivial, If the condition holds, i.e, if
minirl(X) + rz(x) - |xl; x¢ S‘k 0 then minirl(X) + r*(s -X); X € S}>
2 r;(s), by the well known rank function formula r;(s -X) = IS - X] +
+ rZ(X) - r2(s) for dual matroids, This latter minimum is
max{ |Bl; Be/’?lﬂ u/"l;} by the previous theorem, and is therefore obviously
at most rg'(s). The equality means that the maximum is attained at such a
B, which is a base of V4§, Then B €M, and s - B €/,

Theorem 5 [Nash-Williams] Let @ : S—T and for a matroid (S, .M), let
My = {Q(A) AG/’I} Then ((S), .M) is a matroid with rank function
r,(X) = min{r(e™(¥)) + |x - ¥|; ¥ < x}.

Sketch of proof: Consider the partition /7¢ on S defined by ¥, i,e,
1 8nd s, are in the same subset of /7,, if and only if (sl) w(sz).
Define a partition matroid (5,P) so that a subset of 5 is independent

s
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in P if and only if it intersects any subset of ﬂ@ in at most one element,
Then the independent subsets of JW? are just those corresponding to the
common independent subsets of M and P . since the rank of such a subset W
in the matroid P is just Iq (w)|, the nontrivial part of the statement
follows from Theorem 3.

2222£22=2 [Nash-Williams] The rank function R of the union of the
matroids (S5,/), i =1, 2, eee, k is R(X) = min'{;% r, (Y) + |x - ¥|; YQX}.
i=1

Proof: Let /¥ be the direct sum of the matroids (S,uM&), constructed
on k disjoint copies of S, and let ¢ be the natural homomorphism, . identi-
fying the k copies of each element of S, Apply Theorem 5,

2/ Matroid oracles

Both of the algorithms in Section 1 are usually very effective if imple-
mented for various practical purposes If, for example, the input matroids
are graphic and are actually represented by graphs then the number of steps
for these algorithms is a polynomial of the number of vertices of the graphs,
Similarly, if the matroids are represented by matrices (as columnspace mat-
roids), the complexity of the algorithms is again a polynomial function of
the size of the input, But how is a matroid stored "in general"?

Since the number of different matroids on an n-element set is almost
22 , any "general" description would require exponentially large storage
space, Hence, instead of the usual requirement of "being polynomial in the
size of the input" we would prefer being polynomial in n, A usual way %o
formalize this is to assume that our matroid is described by an oracle (sub-
routine) which somehow can tell us whether a given subset is independent or
not. (We are not interested in how.this oracle is realized by a program,)
Then a lower bound on efficiency can be obtained from the number of questions
posed to this oracle, (Roughly speaking, the calls of a certain subroutine
are counted as single steps, no matter how complex the interior structure of
the subroutine may be,)

This oracle is called an independence-oracle. Some other, more or less
usual oracles are the following,
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Name Input Output
Base=-oracle a subset X "yes" if X is a base and "no" otherwise
Circuit-oracle | a subset X "yes" if X 1is a circuit and "no" otherwise
Rank-oracle a subset X | the rank r(X) of X
Girth-oracle a subset X the length of the shortest circuit contained
in X (and, say, o if X is independent)

Unlike in case of graphs, where the various storages (incidence matrix,
adjacency matrix, adjacency lists etc) are in a sense equivalent (no matter
which one is used, the complexity of a certain algorithm is either always
polynomial - the exponent may vary, of course - or never polynomial), in case
of matroids the complexity highly depends on the actual oracle, The interested
reader is referred to [Hausmann-Kortel for a detailed analysis, In what fol-

lows only some typical results are presented,

equivalent,

Proof: If one has a rank-oracle. Ol, it can be used to build an inde=-
pendence-oracle O2 as follows: If X is the input of 02, one simply in-
puts X +to 01; if the output r(X) of O equals IXI then one outputs

1
"yes" for 0,, while if r(X) < |X| then the output for 0, is "no".
On the other hand, r(X) can be determined applying 0, only, since

this is exactly what the greedy algorithm does, with a constant weight func-

tion,.

ggggrem 8 The base-oracle and the circuit-oracle are less powerful then

the independence oracle,

Proof: Let (S./Wl) be defined on an |S| = 2n -element set so that the
only base of /Wl is a certain n-element subset X € S, Any algortthm, using
the base-oracle only in O(nk) times, might get a "no" answer for every
question, Since the number of n-element subsets of S grows exponentially,
several n-element subsets were not asked at all, and we cannot deduce which
one of them is the base, Thus even the independence of the singletons cannot
be determined, For a similar proof of the "weakness" of the circuit-oracle
apply (S,/Wz) where the above set X is the only circuit, On the other
hand, the independence oracle is at least as powerful as these latter two,
as can be proved in a straightforward way,.

However, the reader should verify that the base- and the independence~-

oracles are polynomially equivalent if one knows one base in advance,
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Theorem 9 The girth-oracle is more powerful than the other four oracles.

Proof: It is enough to prove that the girth-oracle cannot be realized
using the independence-oracle a polynomial number of times only. Define
(S,/YB) and (S,JV4) on the same set as above (S| = 2n) and let every
subset of cardinality n be a base in /73 and all except one be bases in
fa. Of course, the girth of JWS is n+l while that of d%; is n, But one
cannot tell the difference using the independence-oracle, unless asking the

independence of all the n-element subsets of S,

3/ Submodular functions

A function b : 2S—, R is submodular if, for any pair X, ¥ of sub=-
sets of S, the relation b(X) + b(Y) > b(XUV Y) +b(X/N Y) holds, If the
relation always holds with equality, the function is modular, The sum of two
submodular functions (or that of a submodular and a modular function) is sub-
modular again, The rank function of a matroid is a special submodular func-

tion,

function b is given by an oracle, which gives b(x) for every X & S,

Then b can be minimized on the underlying set by a polynomial algorithm,

The proof applies the celebrated ellipsoid method [Khachiyan], [Shor]
and is therefore of a significantly different character, However, somé
special cases have "traditional" solution (without real arithmetic with
approximative results etc), e.g. if the submodular function is rl(V)+r2(S-V)

or [éé ri(V)] - |vl, where r; are rank functions of matroids (see Theorems
i=1

3 and 6 respectively). Similarly, the max-flow-min-cut theorem of Ford and
Fulkerson can be considered as such a special case.

If a non-negative submodular function b : Zs-* R is integer-valued,
with b(@#) = 0, then the only reason why b is not the rank function of a
matroid can be that there are subsets X & S with b(X)> |X|. This
emphasizes the usefulness of the following theorem,

Theorem 1l [Edmonds 3] Those subsets Y& S for which

minib(X) -lxl; x¢ Y} 2 0, form the independent subsets of a matroid,
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If b happens to be the rank function of a matroid then this "new"
matroid is just the original one. The reader should verify by Theorem 4 that
if b is the sum of the rank functions of some matroids M , Jg, eee then
this "new" matroid is just their union lev.ﬁ?av eoe o

We close this section with a more recent result, A function p : zs—» R
is called supermodular if -p is submodular,

2222322=l§ [Frank] Let p and b be supermodular and submodular func-
tions, respectively, both integer valued, on the same set S, Let p <b
hold for every subset of S, Then there always exists an integer valued

modular function m so that p< m < b,

As an application let us deduce Theorem 3 from Theorem 12, Suppose that
k = min{rl(x) + 1 (8 - X); X € S} and we have to show that leﬂtﬂfa
contains a k-element subset, We may assume that rl(s) = rz(S) =k by
truncating JWl and JW2 if necessary, By the definition of k we have
k - r2(S -X) < rl(X) for every X € S, Since k - rz(S - X) is super-
modular and rl(X) is submodular, there exists a modular function m(X)
between them, Since m(ix}) =0 or 1 for every x € S, it is very easy to
show that the set B ={x; m({x}) = 1} is just the requested k-element sub-
set,

4/ Some further results

Let (S,M) be a matroid and ial, bl}, {az, bzk, ees be disjoint
pairs from the elements of S, Find a maximal number of such pairs {ai, bi}
8o that their union be independent in (S,/M). This is the matroid parity or
matroid matching problem, The corresponding problem for disjoint n-tuples
(n 2 3) 4is known to be NP-hard, while several advanced results of the class
P are shown (e.g. [Lawler]l) to be special cases of this problem, e.g.
finding a maximal matching in a (not necessarily bipartite) graph, or the
‘whole first section of the present paper.

The matroid parity problem is of exponential complexity [Jensen-Korte],
[Lovédsz 2] but a very important special case is polynomially solvable [Lo-
vész 1], namely when M is linear, i.e, represented over the field of the
reals, In this case the above pairs can be imagined as a set H of lines in
the real projective space JD and one should find k 1lines so that their
union spans a subspace of dimension 2k, Their maximal number V can be
expressed by the following formula:
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k r(H + 4) - r(4a)
Theorem 13 [Lovész 1,21 V= min {r(A) + 2 1 3
= = i=l

j } where

A ranges over all flats of P ana le, H2, eooy Hk} over all partitions of
H.

Example: Consider the set H = {el, ®5 33} of lines where e, = fl, 2},
e, = {3, 4} and ey = {5, 6} in the matroid W, shown by its affine represen=-
tation on Fig. l. Since the rank of ¥/ is four, one cannot find more than
two lines with the required p;operties but one set {el, 93} of two lines
will be appropriate, Hence = 2 and the above minimum can really be
attained by A = {3} and by almost any partition of H,

Another important result in the past few years was a new characteriza-
tion of regular matroids [Seymour 1], We recollect that [Tutte] has already
given an excluded minor type characterization of them, This imples that non-
regularity is an NP-property, i.e. one could prove (in polynomial time) that
the matroid is not regular, provided he/she has already found a forbidden
minor (after a no matter how long search), But a proof of regularity (in
polynomial time) was an open problem,

Let us refer to direct sum as l-sum and introduce the concepts of 2-
and 3-sums, These are amalgamations of two matroids along a common element
and along a common circuit of length 3, respectively, Instead of formal
definitions we offer the intuitive drawings (Fig. 2) for graphic matroids,

These operations preserve regularity.

and 3-sums from graphic matroids, cographic matroids,band from several copies

of a further regular matroid R which can be described in the simplest way

10
by the following binary representation:

O O H H H
O K O H K
H O O K M
o+ H O K
H O M O M
H H O O K
O H KH H O
H O M H O
H H O H O
H M M O O

Before finishing the pure mathematical part of the paper, it might be
instructive to recollect some famous problems of matroid theory from the
point of view of computational complexity.
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Polynomially solvable problems

Base of maximal weight in a matroid (Theorem 1)

Subset of maximal cardinality, simultaneously independent in two matroids
(Theorem 3)

Subset of maximal weight, simultaneously independent in two matroids
[Edmonds 5], [Lawler]

Rank of a subset in the union of matroids (Theorem 6)

Hinimum of an arbitrary submodular function (Theorem 10)

The matroid parity problem for linearly represented matroids [Lovdsz 1]

Test of graphicity of a matroid [Seymour 2]

Test of regularity of a matroid [Seymour 1]

Non-polynomial problems

Length of a shortest circuit of the matroid (Theorem 9)

Length of a longest circuit of the matroid

Maximum of an arbitrary submodular function

The matroid matching problem for arbitrary matroids [Jensen-Kortel, [Lovdsz 2]
Test of binarity of a matroid [Seymour 2]

Test of linearity of a matroid

NP-hard problems

Find a maximal cardinality subset, which is simultaneously independent in
more than two graphic matroids

Generalize the matroid matching problem (with n-tuples, n > 3), but
restricted for linearly represented matroids (or even to graphic
matroids)

Find the length of a shortest/longest circuit of a lineary represented matroid

5/ On the engineering applications of matroids

Since finiteness and linearity are perhaps the most usual assumptions
when modelling physical phenomena, matroids can certainly be very well applied
to decide qualitative problems in science, engineering, operations research
etc, Examples for such problems are
a/ Decide whether a linear electric network is uniquely solvable,

b/ Decide whether a framework (constructed from rods and joints) is rigid.
¢/ Decide whetler a 2-dimensional drawing correctly represents a polyhedron.
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All these problem could theoreiically be solved by classical methods of linear
algebra but round-off errors in arithmetic operations among real numbers
(which are represented by decimals of a finite length in a computer) can cause
qualitative mistakes, especially in case of large systems,

Let us associate a matroid (simply the column space matroid of a matrix)
to the objects under consideration, E.g. if an electric device is modelled as
a multiport, say an ideal trandormer (Fig. 3a) by the system of equations

- : ul -
[-l k O 0] u2 |0]
= ’
0 0 k 1 il 0
i2

or if a framework is described by the usual rigidity conditions, e.g. the

four-rods planar framework (Fig, 3c) by the system F
il
X
xl-xz x2-x1 0 0 yl-yz yz-yl 0 o] 3 0
0 X=Xy Xy-X, 0 0 Yp=¥3 ¥3-¥, 0 i4 )
[ 0 X=X, X,=X4 0 0 V3=V Y4793 il 0
0%, 0 0 XXy yy, 00 0y || °
3
Y4

then the circuit matroid of the graph of Fig. 3b represénts-the matroidal
model of the above 2-port and the affine representation on Fig, 3d visualizes
the matroidal model of the above framework,

Now, the answer to some simple questions can directly be obtained from
these matroidal models, E.g. if one terminates the first port of the trans-
former by a voltage source and the second port by a current source (Fig. 4a)
then the network is uniquely solvable (the other voltages and currents can
uniquely be expressed by them) while the network is singular if both ports
are terminated by voltage sources (Fig. 4b). These answers can also be obtained
by checking that the set {i,, u,} is independent while {i,,i,} is
dependent in the matroid of the transformer (cf, Fig. 3b). Similarly, if we
pin down the first and the third joints of the planar framework of Fig.,3c
then the whole system becomes rigid, which is certainly not the case if the
first and second joints are pinned down (see Figs, 4c, and 4d respectively).
These answers can also be obtained by checking that the set {iz.i4,j2,&4}
is independent while {iB,i4,§3,&4§ is dependent in the matroid of the
framework (cf. Fig. 3d).

However, if one wishes to answer some more complicated qualitative prob-
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lems, some of the advanced matroidal results of the previous sections are re-
has,

quired, For example, an n-port a hybrid immittance description if its ports

can be terminated by voltage and current sources to ensure unique solvability.

Theorem_ 15 [Iri-Tomizawa] An n-port has (at least one) hybrid immittance
description if and only if its matroid has a common base with the partition
matroid B, defined so that X C {ul, Usy eeey Wy A3y 35y ooy 1 } isa

base of B if and only if |X f]{uj. iJ}| =1 for every Jj =1, 2, eee, D

2222£§§=L§ [Laman] If a planar framework with n joints and e = 2n - 3
rods is rigid then e' < 2n' - 3 for every "subgraph" of the framework with
' joints and e' rods, This condition is also sufficient for rigidity if

the framework is generic, i.e, if its joints are in general position.

n

2222222=;Z [Lovdsz-Yemini] Generic rigidity of the planar framework
with graph G is equivalent to the condition that u%;(G) \//W;(G) is the free
matroid for every e € E(G), where qu(G) is the circuit matroid of the graph,
obtained from G by doubling the edge e.

ggggggg=;§ [Rosenberg], [Recski 3], [White-Whiteley]l The subdeterminants

of the describing matrix of the frameworks can be expressed as sums over the
possible decompositions of the graph of the framework into two trees.

This result is analogous to the so called topological formulae of linear
active networks, In case of certain frameworks (the so called simple trusses
[Timoshenko and Youngl, see e.g., the frameworks on Fig. 5) an electric network
model can directly be established [Recski 31.

2233£S§=l2 [Recski 2, 3] If some genericity-type condition is
prescribed, the matroidal model of the interconnection of several multiports
or several frameworks can be obtained from the matroids of the original
objects by the union of the matroids,

The basic tool in these investigations is a result of [Edmonds 2],

Essentially in the same way, matroid partition algorithms can be used
for checking the solvability of complex interconnected electric networks
[Iri-Tomizawal], [Recski 1], [Petersen].

Theoremagg [Lovdsz 1] The minimal number of pins required to fix a frame-

work to the plane can be obtained by the matroid matching algorithm.
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Finally we present a somewhat less recent (!) result which relates prob-
lem c/ (see the beginning of this section) to the rigidity problem,

Theorem 21 [Maxwell] A framework with n joints and e =2n - 3 rods is

rigid in the plane if and only if it does not contain the projection of a 3=-
dimensional polyhedron,

For example, it is intuitively clear that only the first framework on
Fig, 6 is rigid., For further results related to problem c/ the reader is re-
ferred to [Sugiharal. )
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